
AD- A234 029
PROCEEDINGS OF THE

FIFTH ANNUAL

ADA SOFTWARE ENGINEERING

EDUCATION AND TRAINING

(ASEET)

SYMPOSIUM

Sponsored by:

Ada Software Engineering Education and Training Team

Ada Joint Program Office

August 14-16, 1990

REPORT DOCUMENTATION PAGE ______07=_

V Op o ii-18

1. AGENCY USE ONLY (Lute Wv) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

J August 1990 Proceedings

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Proceedings of the Fifth Annual Ada Software Engineering

Education and Training (ASEET) Symposium

S.AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION

Ada Software Engineering Education and Training Team REPORTNUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORTNUMBER

The Pentagon, Rm. 3EI14
Washington, D.C. 20301-3080

11. SUPPLEMENTARY NOTES

12& DISTRIBUTIONAVAILABILITY STATEENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

13. ABSTRACT (Mauxmm 200 words)

This document contains papers and panel position papers that would have presented or

distributed at the August 1990 Symposium which was canceled. Panel discussions on

1) Curriculum Trends in Software Engineering; 2) Lessons Learned in Software Engineering

taught with Ada; 3) The Future of Ada. Papers presented suchaa, Implementation of

Artificial Systems in Ada; A Design Methodology for Object Based Languages; Program

Development and Ada; STANFINS Redesign Subsystem II: Developing a Large MIS Application

Using Ada; The Place of Ada in an Undergraduate Software Engineering Curriculum; Using

Short Laboratory Exercises to Develop Ada Awareness.

14. SUBECT TERMS 15. NUM1ER OF PAGES

Object Based Language, Artificial Intelligence, STANFINS, MIS appli- 125

cations, Program development, Realtime programming 16. PRICECOOE

.7. SECUni"¢ CLASSIFICATION I. SECURrrY CLASSIFICATION 19. 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE FASTRAT..O

Unclassified Unclassitfied uncassified None

NSN 7540-01-280-5500 Standard Form 298, (R. 2-8€,
Priwathd by ANSI t(d. 2 s16
29"1

PROCEEDINGS OF THE
FIFTH ANNUAL

ADA SOFTWARE ENGINEERING

EDUCATION AND TRAINING

(ASEET)
SYMPOSIUM

Sponsored by:

Ada Software Engineering Education and Training Team

Ada Joint Program Offlice

August 14-16, 1990 .

I.

JR I

The views and opinions herein are those of the authors. Unless
specifically stated to the contrary, they do not represent official positions
of the authors' employers, the Ada Software Engineering Education and
Training Team, the Ada Joint Program Office, or the Department of
Defense.

Hi

ASEET TEAM MEMBERSHIP LIST

Ms. Wanda B. Barber
USA Information Systems Software Development Center-Lee
Stop L-75
Fort Lee, VA 23801
wbarber@ajpo.sei.cmu.edu

Captain Roger Beauman
HQ ACD/AULP
AT]': Captain Beauman
Scott AFB, IL 62225
beauman@ajpo.sei.cmu.edu

ILT Sandra Chandler
Software Engineering Training Branch
3390 TCHTGfrTMKPP
Keesler AFB, Mississippi 39534-5000

Captain David A. Cook
1403 Francis Drive

College Station, TX 77840
dcook@ajpo.sei.cmu.edu

Mr. Leslie W. Dupaix
USAF Software Technology Support Center
OO-ALC/MMEA- 1
Hill AFB, Utah 84056

Major Charles B. Engle, Jr. (Ret)
Florida Institute of Technology
Department of Computer Science
150 West University Blvd.
engle@cs.fit.edu
engle@zach.fit.edu
Melbourne, FL 32901-6988

ILT Dan Herod
HQ ATC/SCDBT
Randolph AFB, Texas 78150
scdbt6latc136@ran3l4.af.mil

iii

Captain Joyce Jenkins
US Air Force Academy
Computer Science Department
Colorado Springs, CO 80840
jenkins@usafa.af.mil

Major Jay Joiner
Department of Computer Science

USAF Academy, CO 80840
joiner@ usafa.af.mil

Major Pat Lawlis
AFIT/ENG
Wright Patterson AFB, Ohio
lawlisp@ajpo.sei.cmu.edu
lawlis@blackbird.afit.af.mil

Ms. Cathy McDonald
IDA
1801 N. Beauregard Street
Alexandria, VA 22311
mcdonald@ ajpo.sei.cmu.edu

LCdr Lindy Moran
PACOPSUPPFAC
Box 9
Pearl Harbor, HI 96860-7150
moranl@ ajpo.sei.cmu.edu

Lt Darin Morrow
Software Engineering Training Branch
3390 TCHTG/TTMKPP
Keesler AFB, Mississippi 39534-5000

E.K. Park
Assist. Professor301-267-3080
Computer Science (M.S. 9F)
U.S. Naval Academy

Annapolis, MD 21402
eun@USNA.MIL

iv

Major Doug Samuels
Headquarters AFSC/PLR
Andrews AFB, Maryland 20334-5000
dsamuels@ajpo.sei.cmu.edu

Captain Michael Simpson
OTS/RMC

Lackland AFB, Texas 78236-5000
msimpson~aajpo.sei.cmu.edu

Major David Uznphress
Air Force Institute of Technology
AFIT/ENG
WPAFB, OHf 45433
dumphres@blackbird.afit.af.mil
dumphres@galaxy.afit.af.mil

This Page Left Blank Intentionally

vi

TABLE OF CONTENTS

Page

Message from the Symposium Chair ... 1

Message from the ASEET Chair .. 2

Wednesday, August 15, 1990

A Design Methodology for Object Based Languages .. 3
Dr. Jaime Nifio, University of New Orleans

Implementation of Artificial Intelligence Systems in Ada 15
Professor Sumitra M. Reddy, West Virginia University

STANFINS Redesign Subsystem 1I: Developing A Large
M IS Application Using Ada .. 21
Mr. Richard M. Somers, Computer Sciences Corporation

PANEL: Curriculum 71rends in Software Engineering 39
Chair: Major Pat Lawlis, Air Force Institute of Technology

The Place of Ada in an Undergraduate Software .. 45
Engineering Curriculum
Professor Charles Engle, Florida Institute of Technology
Ms. Luwana Clever, Florida Institute of Technology

Program Development and Ada ... 61
Professor Robert A Willis, Jr., Hampton University

Using Short Laboratory Exercises to Develop
Ada Awareness .. 81
Major Patricia Lawlis, Air Force Institute of Technology
Major Martin R. Stytz, Air Force Institute of Technology

vii

TABLE OF CONTENTS
(Continued)

Page

Thursday, 16 August 1990

Panel: Lessons Learned in Teaching Software
Engineering with Ada .. 101
Chair: Professor Charles Engle, Florida Institute of Technology

Hard-Deadline, Soft-Deadline and No-Deadline Real-Time
Programming: Telling the Truth when Teaching Tasking 103
Captain David Cook, US Air Force Academy

Awaiting A da ... 117
Mr. Barry Kolb, Ocean County College

Panel: The Future of Ada .. 125
Chair: Major Doug Samuels HQTS AFSC/PLR

viii

MESSAGE FROM THE SYMPOSIUM CHAIR

Catherine W. McDonald

The following pages include the papers and panel position papers that would have been
distributed in August 1990 as part of the proceedings for the Fifth Annual ASEET Sym-
posium. Because of financial constraints, this symposium had to be cancelled. However,
the ASEET Team was able to print these proceedings and make them available to the Ada
education and training community. A special thanks goes out to all the authors who gra-
ciously agreed to the publication of their papers even though they were not able to present
their papers at the symposium.

I would like to take this opportunity to thank all the pople who have supported the Team
over the years and offered special support during this past year. The Team, under the aus-
pices of the AJPO, will continue to w' rk to meet the needs of the DO) Ada education and
training community and, hopefully, to conduct future workshops and symposia.

MESSAGE FROM THE ADA SOFTWARE ENGINEERING

EDUCATION AND TRAINING (ASEET) TEAM CHAIR

Major Doug Samuels, USAF

Welcome to the Fifth Annual ASEET Symposium. This year we have endeavored to pro-
vide a wide range of speakers and papers from industry, academia, and government. Inter-
action and the exchange of ideas are paramount to the successful instantiation of Ada in
these domains. This symposium provides an excellent opportunity to accomplish this goal.
Our exhibitors bring you education and trainingmaterials/software tools from the leading
edge of their fields. Please take the time to find out what they have to offer. There are cri-
tique forms throughout the symposium. Please fill these out for they provide the only
medium through which we can improve our vmposia.

This symposium is the last on at which I will be the ASEET Team Chair. It is time for new
blood to surge through the team's veins. I have enjoyed sharing our symposia and work-
shops ove: the iast three years. I ain certain the next chair, Maj David Umphress, will enjoy
future ones. I wish to thank the members of the team, whose untiring efforts have made
the team the huge success it is, and, of course, I thank you, supporters of the team's efforts
and endeavors.

A Design Methodology for Object-based Languages

Jaime Nino
Department of Computer Science

University Of New Orleans
e-mail : jncs@uno.bitnet

Abstract

The development jf modular languages, such as Ada, was intended to facilitate the production of software
systems which support recognized software engineering principles amenable to the production of systems of a high
degree of understandability and reusability. To ensure that these benefits are realized in such systems, however,
requires more than just a programming language. By enlarging the abstraction design unit, we propose an object-
based design methodology which in particular is aimed to be used by beginner Ada programmers. This methodology
is a composition of the top-down design methodology and the data-driven approach.

Introduction

The development of the Ada language was intended to facilitate the production of software
systems that are more reliable, modifiable, efficient and understandable. To ensure that these
benefits are realized in Ada systems, however, requires more than just a programming language.
A coherent software engineering methodology that guides the structuriag of systems in a
disciplined manner, a methodology that is replicable and that takes full advantage of Ada features
is needed.

Previous experiments have demonstrated that improved software quality is not an automatic
by-product of the use of Ada. In a 1982 case study, i traditional, top-down functional design
methodology was used in redesigning a software system in Ada. The software had initially been
implemented in FORTRAN. Although the Ada programmers were unaware of the FORTRAN
design the finished Ada system was remarkably similar to the original FORTRAN system. It was
concluded that few of the potential benefits of Ada had been realized. What is needed is a design
methodology that exploits Ada's rich abstraction mechanisms, among them those supporting
information hiding, encapsulation and software reusability.

By far the most successful design methodology used for procedural languages is top-down
design. This methodology is based on successive refinement of functional specifications.
Among the recognized positive characteristics of this methodology are:

i.Design correctness : Functional correctness of resulting design.
ii.Design composition: Lower level refinements are completely specified by higher level ones.
iii.Design implementation : Using stubs, we can alternate our activities between design,

implementation and testing in that order.

Ada separate compilation and subunit features do directly support the top-down design

3

methodology. Unfortunately, top-down design undermines the use of Ada features available to
enhance maintenance, extendibility and reusability of software. To wit,

i. Encapsulation : functional decomposition uses procedures and functions as its principal
tool for refinement and implementation. The data manipulated and their respective
implementation play only a secondary role, being the support of the implementation of the
design. Consequently, only limited data encapsulation can be achieved.

ii. Genericity : Lower level refinements are specified and tailored by and for the support of
higher level refinements. This can lead to overspecification of design components.

It is clear that this methodology can not be used for Ada without modification if we wish a
full utilization of its features. These were designed to support well known software engineering
principles mandated by current software requirement and software evolution. The software
engineering concepts needed to support top-down design such as procedural abstraction,
structural design, and information hiding are at a lower level of abstraction necessary to take full
advantage of higher abstraction features as presented in Ada. Furthermore these procedure-
oriented methodologies work well when applied to the small, well-defined, well constraint
problems, but are simply no longer adequate for dealing with large-scale, dynamic commercial
and industrial software systems

Object-base languages

For the purpose of discovery of an appropriate software design methodology for the Ada
language, we must identify a different abstraction unit for design, composition and evolution of
software systems; a unit at a higher abstraction level from the functional/procedural unit. The
abstraction unit which we will use for the methodology proposed in this paper, called object, is
the fundamental unit for system composition used and supported by the so-called Object
Oriented Programming Languages. Objects, each with its own local state and operations to
manipulate this state, are used to model data type values and their functionality.

In [19] Wegner classified object-based languages as being those that support objects as a
language feature. In this paper we adhere to this classification. Object-based characterization is
seen as a necessary but not sufficient requirement for being object-oriented. This latter category
requires modules to have a inter-module structure besides from being library units. See
[8,12,14,15]

Within object-based languages, a collection of interacting objects constitute a system. For
system decomposition, objects are to object-based designers as subprograms are to Pascal
programmers. Design based on objects, called object-based design, consists of decomposition of
the system into self-contained objects which interact via a well defined interface. A software
designer, using object based design, has as ultimate goal the production of a simulation of the
desired software system based on objects. Thus we cannot distinguish designing and coding as
being completely separate activities. Using object-based languages, designers are programmers
at a very high level because they specify the objects that will constitute the system. This
specification is done by defining the internal semantics of the object as well as its external
interface.

4

There are a number of software metrics used for design and implementation evaluation of a
system. These metrics include being able to reuse, refine, test, maintain and extend existing
code. It is noted that the value of these metrics have been decreasing as the size of applications,
and hence their complexity, has been increasing.

A major benefit of object-based programming is found in its ability to increase the value of
these metrics. Object-based programming does this by increasing the ability to manage
complexity of software development. The most effective tool for dealing with complexity is
abstraction; object-based design supports abstraction via separation and encapsulation of
concerns, which in turn allow us to manage complexity.

Programming in an object-based language, however, does not ensure that the complexity of
an application will be encapsulated. Applying sound programming techniques can improve
encapsulation, but the full benefit of object-based programming can be realized only if
encapsulation is a recognized goal of the design process.

The main goal of this paper is to present an object-based design methodology which in
particular is aimed to be used successfully by beginner Ada programmers.

Structure and Semantics of Objects

The driving motivation behind object-based modelling is to match the technical specification
and representation of a system more closely to the conceptual view of the real world. An object
is an abstraction and an encapsulation; an abstraction of the problem space representing a well
defined entity within it; as an abstraction the object model is focussed on the external view of an
object, as it is perceived functionally by its users. In this fashion objects are tools for separation
of concerns, in this case essential behavior from its numerous possible implementation choices.
An object -is an encapsulation of its state, attributes and functionality; methodical encapsulation
localizes design decisions that can be characterized as being temporal, overspecific, or secondary
to the nature of the object.

From the point of view of abstraction an object is:
" tangible/visible entity from the problem space
" Entity that plays a well-defined role in the problem space
• Entity that can render a service.
• model of reality

From the point of view of object modeling within a programming language, the fundamental
components of an object are:

• State
" Functionality
• Identity

The state of an object includes all the static attributes that characterize it, as well as the
current values of these attributes. Attributes can be objects themselves. These attributes are

5

updated and managed by the object itself. Other objects are allowed to look-up and update this
state via a well defined functional interface provided by the object.

The functionality of an object includes all the operations needed to manipulate its state and
perform operations (services) for other objects. These operations have specific semantics based
on the object behavior being model. These operations include:

" Constructors/Destructors
• State Modifiers
• Selectors
* Iterators
" Input, output
" Service-rendering

The Identity is the uniqueness condition of an object which separates and identifies it from all
other objects. (Object identity plays a major role in Object-Oriented Databases).

We can readily infer that the object-based model is fundamentally different than the models
embraced by structured analysis, structured design and structured programming methodologies.
Furthermore it has been widely recognized that the benefits of the object model address
fundamental needs of large software system development and system revision and enhancement.
These include:

" Well-structured complex systems by using modules as units of design as well as
encapsulation and information hiding.

" Full use of the expressive power of object-based languages.
" Encourages software reuse
• Leads to systems that are malleable to system evolution
" Reduces the risk factor in the development of complex systems
" Reduces development time
* Results in smaller programs

The object-based model is very useful in the modeling of the server/client paradigm. In this
paradigm one or more clients request services to be performed by a server. This one in turn
knows the services it can perform and can test its own state for the feasibility of a service.

Design methodologies for object-based languages

Several object-based design methodologies have been proposed [1,2,3,4,5,6,12,19] which
partially address issues of object design. These methodologies emphasize the proper design of
objects to ensure completeness in the object specification and encapsulation, as well as to ensure
reusability; in fact they fail to offer complete methodologies as they concentrate only on few
aspects of the design spectrum. Moreover, they do not take into consideration the most prevalent
form of software specification. Software specification is given via a functional description about
the desired behavior of the software system. Thus a designer for an object-based language starts
with descriptions about behavior and functional transformations of input data to output data and
must produce objects which model the system in such a way that their join functionality produces

6

the specified behavior.

In [3] Booch introduced a methodology tailored for Ada, by recognizing the need of a
methodology around objects. The steps of Booch's object oriented technique are simply:

* define the problem
" develop an informal strategy
" formalize the strategy
" identify object and their attributes
" identify operations on the objects
" Establish interfaces
• implement the operations

This methodology is complemented with a design taxonomy introduced by Booch [4] for
reusable software based on generic packages, and which reflects the concerns and needs of many
software developers. It is a taxonomy which is based on actual Ada development experience and
is already in use in a number of different organizations. It deals not only with the functional
behavior of a software component, but also with its temporal and spatial behavior.

Another methodology, responsibility-driven methodology presented [19], has as its goal the
improvement of data encapsulation. Like other proposed methodologies it is based on object
design by stressing the fact that objects are tools for modeling the server/client paradigm.

A major common short-coming found in these methodologies is the lack of a well defined
approach for object identification. Although these methodologies propose guidelines for this
task, they can be effectively used only in the hands of an experienced designer; and as guidelines
they fall short from being a methodology that can be successfully used and can be replicated by
all object-based designers including beginners. They also fail in providing a methodology to
guarantee and determine functional correctness and completeness of the resulting design.
Software design demands a rigorous, replicable methodology to ensure success to its users.

A Pragmatic View into Object-based Design

Before we discuss our proposed methodology, we describe the ad-hoc methods used
successfully by many programmers experienced with object-oriented programming languages.
These programmers have a consistent set of techniques for building systems centered around a
few key ideas. First is the importance of iteration, revision, and refinement. Very early in the
life of a project, design centers around the identification of the correct objects to simulate the
application at hand. Objects are created, operations written, and code produced primarily for
purposes of design and prototyping, to identify the correct set of objects and the proper
distribution of functionality among them. The designer/programmer is expected to completely
revise the design several times until a satisfactory set of objects is discovered.

Another key idea is the importance of reusability of the objects specified. An object should
not only work, but should also be reusable. Programmers have their own methods for making
classes reusable, but revision and reworking are always necessary. Each object must be made as

7

functionally independent of others as possible; this is hard to do and a difficult skill to acquire.

A third important idea is that the set of classes should provide a simulation of the system.
This provides a concreteness that makes object-oriented systems easier to think about. A further
key issue is the use of an existing library of classes; programmers browse through the library
hierarchy to find existing classes that may be reused as they are or with some refinement.

Object-based design and object based programming consists of making objects and adding
functionality to them. It is easy to confuse the two. The difference lies in the level of detail
provided for the methods and in the completeness of the resulting collection (in the case of
object-oriented languages, the completeness of the resulting hierarchy of classes); designers often
implement only a few typical objects from which the rest of the design will follow. We can
conclude from the above that object-based design is quite different from traditional design.
Furthermore, Object-based is intrinsically more complex than the methodologies traditionally
used for procedure oriented languages. The goal of the designer is to develop a simulation of the
system to be implemented using objects as an abstraction, with the constraint that the
specification of these objects must be as generic and independent as possible to guarantee
maximal reusability.

There are several design principles that essential for Object-based design. They include ego-
less programming, as object-based designers are perceived as library enhancers, and exploration
of the design domain and the problem space, as object-based designers must avoid
overspecialization of objects to further reusability. These principles must be at the center of any
object-based methodology and such a methodology must be focussed on conceptual prototyping,
the key ingredient missing from traditional approaches to design. Furthermore object-based
design as an activity must be supported with interactive tools for iterative design revision and
modification.

A Methodology for Object based Design

We will assume as starting point for the design of any software system to be a set of
functional specifications. With an object-based language as implementation target, the designer
must transform these functional specifications into a set of objects with their own functionality,
state and attributes. In a nutshell, we can say that the design is a mapping from the functional
specifications to a set of abstract objects. This mapping is at a considerably high level of
abstraction where the functional specifications are partitioned among a well defined, highly
independent, self-contained collection of units of abstraction and reuse.

The design methodology we propose is a hybrid between top-down design and data-driven
design. To wit, we start with a functional decomposition as in top-down design. Having realized
the top-level part of the functional decomposition, we proceed by identifying the data
manipulated by each functional part. For each functional part we deiermine the data which is
receiving the action specified or playing the acting role in the operation. By doing this we will
get a handle in the identification of the necessary objects which will support the functionality at
hand.

8

These data identification will produce the top-level objects of our design, corresponding to
the top-level design. At this point we completely specify each of these objects by providing a
specification of attributes and functionality.

We then proceed in an iterative way by providing a decomposition of these top-level objects
into sub-objects based on the attribute specification and the functional specification of each
object. For each attribute, using the attribute specifications, proceed to determine whether we are
dealing with a simple primitive object or type that is supported directly by the language or if it is
a new object in its own right, which we will then proceed to specify. For each operation of the
functional specification of the object, we proceed to decompose it and apply the same method to
determine possible new objects from each of its functional components.

Specification of the functional components of an object is comprised of two parts: the
external functional interface, which is the set of operations available for interaction with other
objects. and the internal functionality of the object, which consists of all the operations needed to
create, update, and look up its internal state. Thus for the specification of a given object, we
must identify a set of operations and then in turn a set of objects needed by the given object to
support the required functionality.

We use functional specification to determine objects which in turn will produce subobjects to
support them. This is a mechanism that can be used to determine the existence of objects, and
whose existence is driven by the functional behavior being sought.

As we stated before, object-based design is an iterative process of object design whose
activities include designing, implementing, and testing at the object level; each iteration has as
goal the refinement and correctness of an object. These type of activities are recognized in [5]
under the name round-trip gestalt design, and whose essence is the evolutionary process of object
design to a point where the object its seen to have the right abstraction and semantics.

During the design process of an object the designer must recognize whether the object, as
currently specified, is an library object, a refinement of a library object, or a new object for the
library. We must realize that object-based design reduces to abstract object specification and to
object refinement of an existing library object. With a rich and mature library, the latter is most
common. The interaction of the designer with the library is critical in the design process; thus
software tools must be supplied to support this activity.

Object based design is an evolutionary process both through the design process and through
the life of the object in the library of objects. Experience dictates that object-based design
follows the following schedule of activities:

" Object Identification
• Object Specification
" Object evaluation
" Object implementation

9

Functional specification is one methodology proposed here to aid in object identification.
There are a number of other guidelines for object identification which have been proposed by
several researchers in the area [3,5,7]; these guidelines list sources for object identification such
as tangible things, roles, events, interactions, concepts, structures, etc. Object specification
includes the semantical description of the external behavior of the object (interface, or protocol)
and the list of attributes which will constitute the object's state. It is here that iteration of
specification and implementation plays a crucial role. The goal is not only to produce an object,
but a simple reusable one. Object evaluation is required as the resulting object must be evaluated
with respect to the collection of objects which have been designed and with respect to the
existing library of objects. Among the goals of this activity include the recognition of
relationships among existing objects to simplify design and increase reusability. Object
implementation will exploit object encapsulation by designing and implementing the interface in
such a way that any chosen data representation is not reflected in the interface or affected by it in
subsequent revisions. Software engineering provides guidelines for object implementation using
modules, via the metrics of cohesion and coupling.

The process must have its own correctness procedure to guarantee that the objects meet the
functionality found at each level of functional decomposition. Therefore, the process is an
iterative one between top-down functional functional decomposition and object design. Each
level of functional decomposition from the top-down design is embedded into the state and
functional description of a set of objects determined by the given functional specification at each
level. Following the top-down design methodology, we perform functional decomposition and
show that at each level the functional decomposition is correct and complete. Then correctness
check at object level must show that the functionality of the objects found subsumes the
functional specifications at each level. In other words, we must show that the objects as specified
do provide the functionality behavior as specified at a given design level.

For object-based design the goodness of the design is not only measured by the functional
correctness of the resulting design, comprised by a set of objects; it must be measured by the
reusability of the objects identified as well. We must bear in mind that while software reuse is in
principle an effective method for the addressing of the software crisis, software reusability does
not happen, it must be planned and designed for, in particular programming languages must have
been designed to effectively support and promote software reuse. Designing for reusability is a
hard skill to acquire and teach; experience can certainly make a difference in this software
design aspect. See [9]. The iteration process of object specification and object implementation
aids in the search for a design at a sufficient level of abstraction and reusability.

Life-cycle for object base languages.

Modern programming languages such as Ada were designed by the pressing need to provide
support tools for the development of maintainable, and extensible software systems. As we have
seen earlier, these languages require a design methodology that makes use of their abstraction
and encapsulation features. Furthermore, the entire process of software development cycle ought
to be revised. We are all too familiar with the traditional waterfall software development cycle.

10

Specification

I , :Design 1

ImpmentatonZ

iI i:Testing !

Integration

Waterfall Software Life-cycle for Structured based Languages

This life cycle has been strongly criticized as it does not adequately support the concerns of
the development of highly evolving software systems. Boehm [2] has proposed the so-called
spiral design which creates a risk-driven approach to the software process, rather than a strictly
specification-driven or prototype-driven process.

The key characteristic that a life-cycle must support is the software evolution through an
incremental, iterative design and revision process. The often heard phrase within the object-
oriented developers, Design a little, Implement a little, Test a little, comes to mind. It embodies
the essence of both object-based design and software evolution. In this view, the software life
cycle for object-based languages can be picture as

IA Specification

Design

Evolution

1 : i~i M~dficaion

Software Life-cycle for Object-based Languages

where the evolution activity deals with additions, refinements and revisions of the library of
abstract objects.

11

Support Tools

Object-based design methodology as presented, and object-based implementation require
software tools for the browsing of existing libraries of objects. These tools are already found in
several programming environments for object-oriented languages such as Smalltalk, Objective-C,
and Trellis/Owl among others. These tools, while helpful, increase dramatically the learning
curve for a beginner designer/programmer using the object-based model [17]. Currently, we are
designing a software design and development environment for object-based design having as
design goal the production of a tool with the least amount of obstruction in the task at hand, and
which will support the design, evaluation, implementation process of objects as described above.
A component of this software design environment will be the implementation of a visual tool to
aid in object design. This tool is in the spirit of the CRC-cards (Class, Responsibility,
Collaboration), as presented in [1], which have been used in the teaching of specification of
objects for object-oriented languages. CRC-cards are presented to be used as both a visual and
thinking aid for the teaching of object-oriented thinking. They are used to define objects by
name, responsibilities and collaborators; these last two, represent the functionality of the object at
hand. The authors reported a high level of success of their use in teaching novice programmers
the concepts of objects and in introducing programmers experienced with other paradigms to
complex designs.

Conclusion

Current software requirements and volume mandate further revision of existing software
development methodologies and their supporting tools. Modem modular programming
languages designed to address these issues must be complemented with an appropriate software
methodology akin to the new paradigm embodied within software modularity. Object-based
design raises the unit of abstraction in design and by doing this it provides a methodology to
exploit the high level features for software implementation such as encapsulation and generics.
Functional decomposition, via top-down design, is a design methodology to guide the
identification and design of objects, which should be seen as basic units of abstraction and
software modelling.

Bibliography

[1]Beck, K, Cunningham W. A laboratory for teaching Object Oriented Thinking. Proc. of the
Fourth Conference on Object Oriented Programming Systems, Languages and Applications.
pp. 1-6, 1989

[2]Boehm, b. A Spiral Model of Software Engineering Development and Enhancement. Software
Engineering Notes. Vol. 11 (4), 1986

[3]Booch, G. Software Engineering with Ada. The Benjamin/Cummings Pub. Co. 1983
[4]Booch, G. Software Components with Ada. The Benjamin/Cummings Pub. Co. 1987
[5]Booch, G. Object Oriented Design with Applications. The Benjamin/Cummings Pub. Co.

1990

12

[6]Coad, P. Yourdon, E. Object-Oriented Analysis. Yourdon Press Computing Series.. 1990
[7]Cox, J.B. Object Oriented Programming .An evolutionary Approach. Addison Wesley, 1986
[8]Goldberg A, Robson D. Smalitalk-80: The language and its Implementation. Addison-

Wesley, 1983
[9]Johnson, R., Foote B. Designing Reusable Classes. Journal of Object Oriented Programming.

June/July 1988.
[10]LaLonde, W. R. Designing Families of Data Types Using Examplars. ACM TOPLAS. April

1989. Vol 11, No 2. pp 212-248
[11]Lalonde W.R. Panel : Experiences with Reusability. Chair by Kent Beck. Proc. of the Third

Conference on Object Oriented Programming Systems, Languages and Applications. pp.
372-376. 1988

[12]Lieberherr K. J, Riel A. J. Contribution to Teaching Object-Oriented Design and
Programming. Proc. of the Fourth Conference on Object Oriented Programming Systems,
Languages and Applications. pp. 11-22, 1989

[1 3]Knudsen J.L, Madsen 0. L. Teaching Object-Oriented Programming is more than teaching
Object-Oriented Programming Languages. In European Conference on Object Oriented
Programming. S. Gjessing and K, Nygaard, editors. pp 21-40. Springer-Verlag. 1988

[14]Meyer, B. Reusability : The case for Object Oriented Design. in [2] Vol II. pp. 1-34
[15]Meyer, B. Object-Oriented Software Construction. Prentice Hall, 1988
[16]Nino, J. Object Oriented Models for Software Reuse. Proceedings of the IEEE

SouthEastcom. New Orleans, april 2-5, 1990.
[17]O'Shea, T. Panel : The Learnability of Object-Oriented Programming Systems. Proc. of the

First Conference on Object Oriented Programming Systems, Languages and Applications.
Sigplan Notices, vol 21, no 11. pp. 502-504, 1986

[1 8]Shaffert C, Cooper T, Bullis B, Kilian M, Wilpolt. An Introduction to Trellis/Owl. Proc. of
the First Conference on Object Oriented Programming Systems, Languages and
Applications. Sigplan Notices, vol 21, no 11. pp. 9-16, 1986

[19]Wegner, P. Dimensions of Object-based Language Design. Proc. of the Second Conference
on Object Oriented Programming Systems, Languages and Applications. 1987

[20]Wirfs-Brock R, Wilkerson B. Object-Oriented Design: A responsibility driven Approach.
Proc. of the Fourth Conference on Object Oriented Programming Systems, Languages and
Applications. pp. 71-75, 1989

13

This Page Left Blank Intentionally

14

Implementation of Artificial Intelligence Systems in Ada

Sumitra M. Reddy
Department of Computer Science

West Virginia University
Morgantown, WV 26506

1 Introduction

Artificial Intelligence (AI) systems are normally implemented in LISP, Prolog or in spe-
cialized languages, such as OPS5, KEE, LASER '. When performance became an issue,
conventional languages (especially the C language) have found their way into Al program-
ming. At the same time, Ada has become a major programming language for building large
software systems. Also, many large systems have begun exploiting AI programming tech-
niques for problem solving. These observations motivated us in West Virginia University
to teach a special topics graduate course (started in Spring 1988 and taught every spring
semester since then) using Ada as the implementation vehicle for Al techniques.

The primary goal of the course was to train students who can opportunis-
tically exploit special features of Ada in elegant and robust implementation of
well known AI paradigms.

Emphasis of the course was on actual implementation of AI systems using special fea-
tures of the Ada language such as packages, private data types, tasks and exception handling.
Specifically, Ada was used as "Ada" as opposed to translating an existing system into Ada.
The course was ta-geted at advanced graduate students in Computer Science with experience
in implementing large programming projects. The students, in the last three semesters the
course was taught, were proficient in C. A few were also familiar with Al techniques and the
Ada language.

In the rest of the paper, we will briefly outline the course syllabus, Ada features that have
been exploited in implementing Al concepts and the description of the semester projects.

2 Course Syllabus

The syllabus was divided into two tracks. The first track was designed to provide sufficient
working knowledge of Ada to the students, assuming that they had no previous experience
in Ada. The second track consisted of lectures on major topics in Artificial Intelligence
including a variety of programming paradigms. Because of its importance and relevancy to
the assignments/projects, the concept of Ada packages was introduced at the very beginning
of the course.

'Commercial systems

15

To familiarize the students with the basics of Al programming, the following paradigms
were introduced.

" Object-oriented programming.

" Data-driven programming using demons.

" Rule-based programming.

The following major AI techniques were discussed in the class and subsequently some
of these were assigned as tool-building projects to be used later in the semester for
developing a mini-expert system.

- Knowledge representation techniques using semantic networks, frames, scripts
and rules.

- Inheritance to reduce redundancy.

- Production systems using problem solving rales and forward and backward chain-
ing inference engines.

- Uncertainty and probability for handing incomplete knowledge.

- Natural language processing using grammar-based approaches.

- Blackboard model for problem solving in a cooperative environment.

Discussion of the Al techniques was interspersed with various Ada topics and good soft-
ware engineering, principles. Particular emphasis was placed on pack2ges, information htd-
zng, private data types, variant records, access types, tasks, overloaded subprograms, separate
compilation, and exception handling since these concepts presented the means to build ro-
bustness into implementation. Generics were also discussed for various possible applications,
but these were not implemented due to time constraints.

3 Sem., ster Project

Since the primary goal of the course was to train students who can incorporate Al techniques
into Ada programs, they were assigned a semester long project which allowed them to solve
a complete problem using the tools developed as a part of the project. The project consisted
of two parts:

I) Development of Al tools comprising of a knowledge representation package to build
knowledge bases containing both facts and rules, and an inference engine that operated on
a knowledge base.

2) Building a mini-expert system as an application of the Al techniques to solve a com-
plete problem using the tools developed in the first part of the project.

In the next two sections, we describe the Al tools developed by the students. Applications
are described in the third section.

16

3.1 Knowledge Representation Package

The students developed a hierarchical object-oriented knowledge representation package us-
ing the frame style approach (in the object-slot-value format) that allowed relations and
inheritance.

The purpose of this package was to enable the users to dynamically build, peruse and
manipulate knowledge bases. Multiple values as well as different types of values (for exam-
ple, string, integer, float etc.) were allowed to be placed in any slot of an object.

The package specification consisted of a set of operations (subprograms) such as create,
delete, display, relate etc. on object/slot/value wherever they are applicable. The package
body contained implementations of these subprograms and also support operations suc' Is
searching for an object, slot or value before create, delete or relate operations could take
place. To foster incremental development of the package, body stubs were used in the pack-
age body for separate compilation.

Overloaded subprograms were used to perform similar operations on an entity (an entity
may be an object, slot or a value). For example, to create an object, only the name of
the object (hence only one parameter) was required. To create a slot, two parameters:
the name of an object and the name of the slot were required. To create a.value, three
parameters were required: the object, slot and the value. The overloading feature of Ada
allowed implementation of the three versions of create to accomplish the creation of the
desired entity. Following are examples of the calls to the overloaded subprograms of create
in pretty print form:

create (dan)
create(dan rank)
create(dan rank graduate)

The relate operator was used to connect any two existing objects in the knowledge base
using either the predefined isa relationship or using any user-defined relationship. Only the
isa relationship allowed for inheritance. Inheritance mechanism was implemented to enable
retrieval of the values from th- 9uper objects in the inheritance hierarchy if no values are
found locally in the slot of an object.

Before relating any two objects using a user-defined relationship (i.e. other than isa), the
relation pairs, such as master-pet, parent-child were first created using the create-rel facility.

An example of an object (in pretty print form) is given below.

{{ dan
isa: student
rank: graduate

age: 22

17

In the above example, dan is the object with the slots rank and age, and is a member of
the class student (another object). The inheritance mechanism allows dan to inherit values
from the super objects in the inheritance hierarchy.

The same package also facilitated creation of problem solving knowledge in the form
rules. These will be discussed in the next section.

3.2 Inference Engine

The students implemented a generic (not to be confused with Ada generics), domain-
independent forward chaining inference engine to process user-defined problem solving knowl-
edge expressed in terms of rules. The purpose of the inference engine is to apply problem
solving rules to the domain knowledge created by the users of the knowledge representation
package.

The rules, which are also objects similar to other objects containing declarative facts in
the knowledge base, were created by the users in a prescribed format, each with an if slot
containing a set of condition clauses as the value, and a then slot containing the "actions"
to be taken if the conditions were satisfied.

The conditions in the if slot were required to be expressed in' object-slot-operator-value
format. The same facilities implemented in the knowledge representation package (the first
AI tool) were used to create these rule objects. Variables, signaled by a special character ?,
were also allowed in the rules. Example of a rule object that uses a variable is shown below.

{{ rule2
isa: rule
comment: '' Feed dog-food to a samoyed

if -it is hungry''
if: ?x isa = dog

?x type = samoyed
?x food = none
?x hungry = yes

then: create(?x food dog-food)
create(?x hungry = no)

The object rule2 contains the slots comment, if and then, and is a member of the class
rule. Every rule was created as a member of the rule class. This designated class of objects
were specially treated (interpreted) by the engine to solve problems.

The value of the if slot has four sets cf conditions ANDed together. The comment slot
contains the description of the rule in English. Each condition is expressed in terms of four
entities <object> <slot> <operator> <value>.

18

In the first condition, x, %sa, = and dog are the object, slot, operator and the value
respectively. It states that "if there is an object (not known yet) that is a member of the dog
class". The second condition is interpreted as "if the object x (matched in the first condition,
hence known) has a slot called type with a value samoyed ". The other two conditions can
be in;erpreted in the same way.

The (?) prefix for the variable x signals the engine to perform matching against the ob-
jects in the knowledge base. The variable x is then bound to the object that is matched first.
The matched object is used in the second condition onward. In case of a match failure in any
of the subsequent conditions, the engine picks the next matched object and the conditions
are evaluated again. To simplify the system, match variables were not allowed in the place
of an operator; these were explicitly named, such as "= ">" or <

The master task of the inference engine dynamically spawned the required number of Ada
tasks (same as the number of rules in the knowledge base, hence varied from application to
application), and assigned each task to process/interpret a specific rule. As a result, the con-
ditional parts (the if slot) of all the rules were "concurrently" 2 processed by the designated
task to determine its eligibility to be fired. The rules are normally processed sequentially in
the systems implemented in other languages.

Since each task performed the same job of matching the facts in the knowledge base
against the conditions, a task type was used to implement this feature. Using an access
type, the required number of tasks were dynamically created as needed by the problem.
jFrom the conflict set of eligible rules, the master task selected one rule depending on the
conflict resolution criteria; the actions specified in the then part of the selected rule was then
executed. The engine repeated the match-select-fire cycle until no rule was eligible or an
explicit HALT action was encountered.

3.3 Applications

To demonstrate the capabilities of the inference engine, the students performed syntactic
analysis of simple declarative sentences using context-free grammar rules, such as S -- NP
VP ; NP --4 DET ADJ N ; NP - PRN ; VP -- V ADV ; VP --- V PP ; etc. Based on the
set of grammar rules, an input sentence was either accepted or rejected by the engine.

In addition to the syntactic analysis problem, students also implemented a mini-expert
system using the tools developed in the class. Typical problems, solved by the mini-expert
systems built by the students, were scheduling of classes, assigning a classroom, getting a
car from the university's motor pool, and various other university-related activities which
can be "solved" using rule-based techniques.

2True concurrency is realized only on systems where multitasking is done using multiprocessors

19

Since the engine was designed to be generic, it was not hard-coded for any specific
problem. Problem specific information, described by relevant facts and rules, were input by
the user to create the knowledge base.

4 Conclusions

Even though the course had the ambitious goal of introducing Al techniques and the features
of Ada, we found it feasible to rapidly cover both topics because of the advanced preparation
of the students. This could not have been feasible if this was offered to beginning students.

Ada package structure was found to be very natural in implementing the knowledge rep-
resentation system with controlled visibility. All the data structures were hidden from the
users of the package; only the functions to develop and manipulate the knowledge base were
provided in the package specifications. Exception handlers were developed to print appro-
priate error messages.

In addition to the inference engine, another possible use of the Ada tasks discussed
was the implementation of a blackboard (the master task) that uses cooperative, multiple
knowledge sources (hence multiple Ada tasks that can operate concurrently) communicating
through the blackboard. An extended version of this course spanning two semesters could
include implementation of the blackboard concept and other Al techniques.

The project required extensive manipulation of symbols. Therefore, two different string
handling packages for processing variable strings were provided at the beginning of the
project. While most of the students selected the package of their choice, some wrote their
own string package.

Since Ada does not provide a subprogram type, different (and less straightforward) ways
of implementing the data-driven programming using demons were discussed, but not actually
implemented.

Pcstscript: A number of students who went on to work on different Al projects following
the class remarked that their Ada experience was very beneficial as well as influential in
designing software implemented even in languages other than Ada.

20

STANFINS Redesign Subsystem II: Developing A Large MIS
Application Using Ada

by Richard M. Somers
Project Manager

Computer Sciences Corporation
Applied Technology Division

P.O. Box 16008
Indianapolis, IN 46216

Abstract

STANFINS Redesign Subsystem II (SRD-II) is a very large MIS
application (1.8 million lines of code) that is being written
in Ada. As a result of its being both very large and an MIS
application, many interesting challenges were encountered
during its development.

Part 1 of this paper contains a brief overview of SRD-II
including a discussion of its functional requirements and types
of processes.

Part 2 of this paper discusses several of the many challenges
that have been encountered and the solutions that were
developed. Included in these are: COBOL to Ada transition,
Rational development tools, Decimal Arithmetic Package, Host
Character Package, operating environment interfaces, Rational
to MVS transition, and testing on different compilers.

Part 3 of this paper discusses the various methods of training
that have been utilized. Included in these are: lecture/
hands-on, computer aided instruction, newsletters, self
instruction, and walk throughs.

Part 4 of this paper summarizes conclusions regarding training.
Included are: COBOL language/MIS background vs. PASCAL-related
language/non-MIS background, effectiveness of the various
training methods, and recommendations.

21

Overview of SRD-II

The contract for STANFINS (Standard Finance System) Redesign
Subsystem II (SRD-II) was awarded to Computer Sciences
Corporation (CSC) in September 1986. Like the majority of
Management Information System (MIS) applications, SRD-II was
directed to be written in COBOL.

STANFINS is the U.S. Army's field-level accounting system for
general funds servicing posts, camps, and stations. STANFINS
Redesign is an interactive system that replaces the current
STANFINS batch system. It is composed of two (2) subsystems:
Subsystem I and Subsystem II.

Subsystem I is divided into Travel, Accounts Payable, and
Disbursing and was developed independently.

Subsystem II is divided into the following ten (10) components:

1. Funds Receipt

This component distributes program and budget
guidance, permits adjustments of program requirements
based on actual guidance received, and calculates
dollar and percentage deviations between program and
actual.

2. Funds Status

This component provides automated support and general
ledger control for the expenditure stages of
accounting (commitment, obligation, accrual, and
disbursement).

3. Accounts Receivable

This component establishes accounts receivables,
records receivables, produces original and follow-up
bills, and processes collections.

4. General Ledger

This component generates trial balances monthly and
annually, generates cash reconciliation reports, and
provides adjustment capabilities to several
installation reports.

5. Other Funds

This component separates and forwards various
Transactions for Others (TFO), Transactions by Others
(TBO), Cross Disbursements (XD), and Miscellaneous

22

transactions.

6. Fixed Assets

This component accounts for the real and personal
property owned by the U.S. Army. It provides a
method for recording, capitalizing, and depreciating
real and personal property.

7. Cost Accounting Standards

This component establishes accurate labor performance
standards, summarizes and interprets labor
performance, and provides trend analysis.

8. Cost

This component calculates labor cost, accrues leave
and benefits for civilian employees, calculates
equipment usage cost, applies overhead, and stores
total cost by job order, cost center, and element of
resource.

9. Tables Maintenance

This component provides the capability to
interactively maintain data used by the system to edit
and validate other data.

10. System Support

This component controls access to menus and screens,
allows maintenance of programs, and allows control of
batch jobs.

By any measure SRD-II is a very large system. The following
statistics may provide an example of how large the system is:

Lines of Code: 1.8 million (approximately)
Programs: 528
Screens: 381
Records: 175
Input Interface Files: 39
Output Interface Files: 26
Reports: 137

The types of processing done by these programs can be

summarized by the following five (5) processes:

1. Auxiliary Support

This process provides access control and system
security, database administrator capabilities, system

23

maintenance capabilities, end of period processing,

and batch job sch-'duling.

2. Batch Data Store Maintenance

This process receives files from interfacing
systems, edits them, and updates system files.

3. Batch Information Generation

This process produces hardcopy reports too large to
be run interactively and generates interface files
for other systems.

4. Interactive Data Store Maintenance

This process enables the end user to interactively
update system files.

5. Interactive Information Generation

This process interactively displays small reports
generated from system files.

The net requirement was to develop an interactive system that
received data from other systems, generated data to other
systems, retrieved/updated large volumes of records, and
produced hardcopy reports. This type of application was
perfect for the traditional COBOL language and staffing was
done accordingly.

Challenges and Solutions

The project was faced with numerous challenges none of which
were insurmountable. Several of these challenges and the
solutions that were developed are listed below.

1. COBOL to ADA Transition

The first majoe challenge occurred in May 1987 when
the contract was modified to require Ada as the
programming language instead of COBOL. Since the
application was MIS, the preferred solution was to
locate and hire experienced Ada/MIS programmers and
analysts. It became readily apparent that these
people did not exist. Two choices then remained:
hire Ada programmers and teach them MIS fundamentals
or teach Ada to the COBOL/MIS people already on staff.
The second choice was selected as the most desirable
from both time and cost considerations, and this

24

decision proved to be correct. The COBOL/MIS
background proved to be invaluable in the development
of the project.

2. Rational Development Tools

Due to the enormous amount of source code to be
generated, it soon became apparent that a special
development tool was required. Numerous compilers
were looked at and the Rational R1000 was finally
selected. The Rational R1000 offered excellent
editing capabilities, full debugging capabilities,
testing facilities, and a configuration management
system. Initially four (4) processors were acquired
in the summer of 1987, but currently six (6) are being
used due to the volume of code.

3. Decimal Arithmetic

The accuracy of floating point and fixed point types
provided by Ada is compiler-dependent. The target
compiler used in the IBM/MVS environment can only
provide 8 to 9 positions of accuracy. It was
determined that 14 positions of accuracy were
necessary due to the kinds, size, and volumes of
numbers used by the system. As a result, CSC
developed the Decimal Arithmetic Package that has been
used to enter, retrieve, and store decimal values with
the larger required positions of accuracy.

4. Host Character Package

Ada's standard string type is based on the ASCII
character format. The target environment, however,
has an EBCDIC character format. CSC developed a Host
Character Package which contains a new string type and
corresponding functions based on the EBCDIC character
format.

5. Interfaces

Interfaces were developed to provide access to
operating environment functions. Included in these
were a CICS interface which provides I/O capability,
a Datacom/DB interface which provides database
retrieval and storage capability, and an operating
system interface that provides access to the target
environment operating system.

6. Rational Environment to Target Environment Transition

Code was developed and tested on the Rational R1000
and then ported to the target environment. It was

25

expected that differences would be detected between
the environments due to fact that one was a
development environment and other was a target
environment. It was hoped, however, that the
differences would be minimal, and this turned out to
be the case. Some of the differences were the result
of compiler deficiencies and others the result of
architecture limitations. A few of the differences
that were discovered are listed below.

Many subunits were initially created to allow minimum
recompilation if changes had to be made. The Rational
R1000 handled these very efficiently. The target
environment could not due to a deficiency in the
target builder. As a result, subunits were brought
inline prior to porting to the target environment.

Many early generics were nested. That is, generics
had instantiations of other generics. Again, the
Rational R1000 handled these very efficiently. The
target environment, however, would not compile nested
generics. Those generics and the dependent generic
instantiations had to be rewritten.

Once the characteristics of the target environment
were determined, the code written on the Rational
R1000 was adjusted accordingly.

7. Testing on Different Environments

All programs were tested on the Rational R1000 prior
to porting to the target environment. As mentioned
above, interfaces were created to take advantage of
the target operating system. The Rational R1000 had
its own set of interfaces for its own operating
system. As a result, it was necessary for to develop
software to emulate the target environment on the
Rational R1000. This provided a greater degree of
confidence when testing actually began on the target
environment.

Many of these challenges are common to any software
development project and should not be considered as unique to
Ada/MIS applications. Often the development environment and
the target environment are different and present similar
problems. The one (1) challenge that is unique is the
transition from COBOL to Ada. Training was essential to
accomplish this transition.

26

Training Methodologies

Once the decision was made to implement the project using Ada,
many efforts were made to provide meaningful and effective Ada
and Ada-related training. This process began long before the
actual coding phase and was offered to all employees regardless
of their assignments on the project.

1. Lecture/Hands On

Initial training was provided by CSC and
CSC-contracted employees in a lecture/hands-on format.
This was accomplished by an 80-hour course presented
8-hours per day over a two-week interval. It
included a review of object oriented design concepts,
exposure to Ada concepts, and hands-on training using
the Rational R1000. Initial employee response was
very poor for several reasons. The instructors had
only about two (2) months of Ada training themselves
prior to teaching the course and were able to provide
little more than superficial knowledge about Ada. The
instructors were technical personnel, not professional
instructors, and were not able to convey information
in an efficient manner. The only Ada.training
material available was ANSI/MIL-STD-1815A-1983 and it
was much too technical to be used effectively. The
employees were, by and large, not familiar with block
structure languages and resisted accepting Ada. Also,
the employees attending the course were not yet using
Ada on the project, so there were no work-related
practical applications where skills learned in class
could be used.

These deficiencies were overcome by making several
changes to the course structure. Richard E. Bolz
was hired as a consultant to provide professional Ada
training. This strategy was extremely effective in
both the short term and long term. In the short term
it provided the much needed professional instructor
that was both knowledgeable and able to present
concepts efficiently. In the long term it allowed
CSC to develop instructors that could learn from
Mr. Bolz and fill the void created when he was not
available. He permitted CSC to use and reproduce the
materials he developed. An introductory course was
developed using his Software Engineering with Ada
materials. In-class exercises were added to provide a
method to emphasize the major objectives of the course.
A copy of the course outline that is presently being
used for this introductory course is included as
Appendix A, and a copy of the in-class exercises is
included as Appendix B. An intermediate course was

27

developed using his AdaVenture materials.
Advanced courses were developed to teach advanced Ada
concepts such as generics and tasking. Ada-related
training, primarily Rational RI000 training, was still
conducted by CSC instructors, but was more effective
because the new instructors were more frofessional.
When the time came to actually write code, refresher
courses were offered to reacquaint employees with Ada
and Ada-related skills.

2. Computer Aided Instruction

To supplement the formal lecture/hands-on training,
computer aided instruction (CAI) was offered to
employees. CAI included both a tutorial and practical
exercises. It allowed employees to progress at their
own pace and provided the capability to review
material that was unclear. It also recorded employee
progress for management review. Initial employee
reaction was again unfavorable primarily because there
was not a perceived need to know Ada since it was not
then being used and a reluctance to learn Ada since
its syntax and structure was viewed as threatening.

The reluctance was overcome once the formal training
improved and the project moved closer to
implementation. Employees discovered that they could
learn Ada and that motivated many to want to learn.
CAI was successful at letting them experiment with the
language.

3. Newsletters

Newsletters were initiated as a way to provide regular
informal training concerning Ada and Ada-related
topics. Each issue concentrated on a specific topic
and contained an exercise at the end to reinforce the
content of the issue. The early issues were devoted
to the Rational R1000 since it was necessary for
employees to become acquainted with it before writing
code. Later issues concentrated on specific Ada
topics. The newsletters were well received because
they were written in layman's terms rather than the
technical language of ANSI/MIL-STD-1815A-1983. It
also had the unintended benefit of forcing the author
to research material in preparation for each issue and
thereby become more knowledgeable himself.

4. Self Instruction

Many employees purchased books about Ada to supplement
training. while there were many books available, most
were technically oriented and assumed a level of

28

knowledge beyond that of the introductory student.
The book that was found to be the most helpful was
Software Engineering with Ada by Grady Booch. This
book has a very readable style and is ideal for the
introductory student. It contains numerous examples
and provides many exe-cises. Unlike formal training
or CAI, it could be taken home by the employee
overnight or over the weekend.

5. Walk Throughs

Once Ada code was written, walk throughs were
established to provide a way to present how code was
written at the project level. The walk throughs
allowed team members to observe different ways to
write code. while each programmer had their own
style, each could discover way3 to improve their code
by looking at the way others were writing code. This
was very valuable initially because few programmers
knew how to write Ada very well and no one knew how to
write an MIS application using Ada. The walk throughs
provided an informal forum for discussing problems and
sharing solutions, and gradually helped develop the
confidence of each programmer.

Conclusions

Following are some conclusions that have resulted from the
experience of developing SRD-II:

1. COBOL Language/MIS Bacrground vs. Pascal-Related
Language/non-MIS Background

Programmers with Pascal-related language backgrounds
generally accepted Ada and developed a proficiency
with Ada much quicker than those with COBOL language
backgrounds. This was expected since Ada is based on
the Pascal language.

Programmers with COBOL language backgrounds tended to
resist Ada because from their experience MIS
applications were written in COBOL. They also had
difficulty understanding many Ada concepts like strong
typing, package structure, local variables, block
structure, and parameter passing. The greater the
resistance or frustration, the longer it took for them
to accept and learn Ada. This does not mean that
programmers with COBOL language/MIS backgrounds can
not learn Ada or that they should be discouraged from
doing so. One of the most proficient programmers on

29

the project is a former COBOL programmer who has fully
accepted Ada.

Programmers with COBOL language/MIS backgrounds can
provide the much needed MIS experience that programmers
with Pascal-related backgrounds often do not have.
Beiig able to write Ada code is not enough. One must
understand MIS applications and be able to analyze
requirements to write Ada/MIS code well. One of the
most respected analysts on the project is a former
COBOL programmer with 20+ years of MIS experience.

People from both backgrounds will be necessary until
people from the single Ada/MIS background become
available. This project has developed the first
generation of these people.

2. Effectiveness of the Various Training Methodologies

By far the most effective training methodology was
lecture/hands-on as it provided the introductory
exposure to both Ada and the Rational R1000. It
allowed employees to learn both Ada concepts and the
Rational R1000 in a classroom environment where
questions could be asked and answered without the
employee feeling intimidated. The immediate feedback
offered by an instructor can often answer a question
or solve a problem for an employee that CAI or a book
could not readily answer. Employees also benefit from
the questions that others ask.

The next most effective training methodology was the
walk through as it provided the employee with a peer
group with whom he/she could exchange information on
the actual implementation of Ada. This dynamic
atmosphere provides valuable experience and
confidence.

CAI was effective only if the employee was motivated
to pursue it. It is a passive environment that
responds only to questions included in the tutorial.
Questions the student may have that are not included
in the tutorial will not get answered. It also does
not provide the interaction of a group setting. The
employee does not get the benefit of the answer to a
question someone else asks.

The newsletters provided reinforcement of Ada and
Ada-related information at regular intervals in a
informal format. Its value was as a supplement to
formal training and as reference material.

The least effective training methodology was self-

30

instruction primarily because the format of most
books is not oriented to training. Even the best of
books do not and can not answer all questions. The
employee will often begin a book with good intentions
only to lay it aside when it becomes boring,
confusing, or is not project related.

3. Recommendations

While programmers with an Ada or Pascal-related
'anguage background will probably be able to write Ada
code very quickly, do not discount the programmer with
a COBOL/MIS background. The majority of the
development lifecycle is application dependent and
language independent. Thus, the MIS experience these
people can offer to a project is every bit as valuable
as the ability to write Ada code.

Start Ada training near the time when it will be used.
To start earlier is inefficient because employees will
be busy with current assignments and will not retain
the knowledge or skills taught. They are will also be
more receptive to learning skills that can be
immediately applied.

Ensure that instructors are knowledgeable and
professional. If they are, the courses will be more
efficient and the employees more receptive to the
information being taught. If necessary, hire
consultants to provide initial training. They can
provide that much needed initial exposure to Ada.
Consultants can not always be there, however, so it is
very important for a project to eventually develop its
own instructors. They provide continuity and a
visible link between the project and Ada.

Be open and candid with employees on how a project is
progressing. This can be done with newsletters or
with short briefings, but it is important that
communication be maintained. Share the successes of
the project so employees can be informed about what
progress is being made. It builds morale. It is just
as important, however, to share the setbacks. Rumors
have a way of pervading a project. The effect of
rumors can be minimized if setbacks are acknowledged
and solutions explained. It builds ccnfidence. Good
communication can bind the employees on a project
together.

SRD-II has demonstrated that a la:ge MIS application can be
developed using Ada. Other large MIS applications can now be
considered because SRD-II has paved the way.

31

Appendix A

Introduction to Ada

Course Oujline

A. Software Engineering
1. Goals
2. Principles
3. Object Oriented Design

B. Overview of the Ada Language
1. ANSI/MIL-STD-1815A-1983
2. Introduction

C. Ada Syntax
1. Character Set
2. Lexical Units
3. Reserved Words
4. Delimiters

D. Rational Fundamentals
1. Basic Mechanisms
2. Ada Program Creation
3. Ada Program Modification
4. Additional Topics

E. Types & Subtypes
1. Scalar

a. Discrete
1. Integer
2. Enumerated

b. Real
1. Fixed
2. Floating Point

2. Composite
a. Array
b. Record

3. Private
4. Access
5. Task

F. Program Units
1. Packages
2. Procedures
3. Functions

G. Control Structures
1. IF Statements
2. Loop Statements

a. Loop .. Exit
b. For .. Loop

32

c. While .. Loop
d. In Reverse .. Loop

3. Case Statements
4. Block

H. Input / Output
1. External Files

a. SEQUENTIAL 10 (Generic)
b.. DIRECT IO TGeneric)

2. Text Files
a. TEXT IO
b. INTEGER 10 (Generic)
c. FIXED IO (Generic)
d. FLOAT 10 (Generic)
e. ENUMERATIONIO (Generic)

3. IOEXCEPTIONS

I. Visibility Rules
1. Use Clause

J. Program Structure & Compilation Issues
1. Context Clause (With)
2. Compilation Units
3. Subunits
4. Compilation Dependencies
5. Program Library

K. Exception Handling

L. In-Class Exercises
1. Exercise 1
2. Exercise 2
3. Exercise 3

33

Appendix B

Introduction to Ada

Exercise 1

Objectives:

1. Gain an understanding of type and object declarations.
2. Gain an understanding of private types.
4. Gain an understanding of packages.
5. Gain an understanding of procedure declarations and

calls.
6. Gain an understanding of Textlo, Enumerationto,

IntegerIo,and Sequential Io.
7. Gain an understanding of control statements.
8. Gain an understanding of visibility rules.
9. Gain an understanding of compilation dependencies.

Requirements:

1. Login to Rational.

2. Create a world called Exercises in your home library.

3. Create an Ada package, ProcessEmployeeRecord, that
will contain the resources described in Requirements
4 - 7.

4. Declare a private record type, EmployeeRecordType,
that includes the following fields:

a. Last Name up to 25 characters.
b. FirstName up to 15 characters.
c. Age between 0 and 125.
d. JobTitle to be any of the following:

(1) Programmer Analyst
(2) Senior_Analyst
(3) Supervisor
(4) ProjectManager
(5) Manager
(6) Other

5. Write a procedure Create Record separate from the
package that will accept user input and create a record
of this type. To reduce keystrokes by the user and to
reduce the chances of an entry being misspelled, the
input of the Job Title component should be of the
multiple-choice variety that is validated by a case
case statement. Also, investigate the use of
attributes in a loop statement to provide a more
efficient alternative to the case statement.

34

6. Write a procedure Print Record separate from the
package that will print the contents of this record to
the screen in a readable form with labels.

Example:

Last Name: Doe
First Name: John
Age: 61
Job Title: Manager

7. Write a procedure Create File separate from the
package that will read the contents of this record to a
sequential file.

8. Write a driver procedure that will utilize the
resources in package Process_Employee_Record to:

a. call Create Record
b. call Print Record
c. call CreateFile

35

Introduction to Ada

Exercise 2

Objectives:

l. Gain a further understanding of packages.
2. Gain a further understanding of private types.
3. Gain a further understanding of procedure declarations

and calls.
4. Gain a further understanding of TextIo, EnumerationIo,

Integer_Io, and Sequential Io.
5. Gain a further understanding of visibility rules.
6. Gain a further understanding of compilation

dependencies.

Requirements:

1. Login to Rational.

2. Go to the world called Exercises in your home library.

3. Modify the Ada package ProcessEmployeeRecord so that
it contains the resource described in requirement 4.
Notice which units are affected by the change.

4. Write a procedure Print File separate from this package
that will print the contents of the sequential file
created in Exercise 1 to the screen in a readable form
with labels. Reverse the order in which the record
from Exercise 1 is displayed so that First Name is
listed first and LastName is listed second.

Example:

First Name: John
Last Name: Doe
Age: 61
Job Title: Manager

Why must this procedure be contained in package
ProcessEmployeeRecord and not another arbitrary
package?

5. Write a new driver procedure that will utilize the
resouces in this package to call PrintFile.

36

Introduction to Ada

Exercise 3

Objectives:

1. Gain a further understanding of TextIo (GetLine &
SkipLine).

2. Gain a further understanding of control statements.
3. Gain an understanding of block statements.
4. Gain an understanding of exceptions and exception

handling.

Requirements:

1. Login to Rational.

2. Go to the world called Exercises in your home library.

3. Modify the Ada procedure Create Record that is separate
from package Process_Employee_Record so that it handles
bad user input locally as described in Requirements 4
and 5. Notice which unit(s) is/are affected by the
change.

4. Use procedures Get Line and Skip Line from package
Text Io so that regardless of user input for Last Name
or FirstName, the defined number of spaces (25 and 15
respectively) are allocated to each variable. If not
enough characters are entered, fill in the required
remainder with blank spac-s. If too many characters
are entered, truncate the excess and clear the buffer.

5. Enclose Age_Io.Get (Age) and PromptIo.Get (APrompt)
within block statements so that in each case, local
exception handlers prevent the program from being
terminated when exceptions are raised due to invalid
entry. Determine which exceptions are likely to be
raised for each variable and develop local exception
handlers to:

a. Advise the user that the entry was invalid
b. Clear the buffer
c. Prompt the user for a new entry

Enclose the block statement within a loop so the user
only exits when a valid entry is made.

37

References

Bolz, Richard E., Software Engineering with Ada

Bolz, Richard E., AdaVenture

Booch, Grady, Software Engineering with Ada, Benjamin Cummings
Publishing Company, Inc., Menlo Park, California, 1987.

38

Panel Session

Curriculum Trends in Software Engineering

Patricia Lawlis, Chair

Formal curricula in Software Engineering are just beginning to become widespread.
This panel discussion addresses many of the issues involved with developing a
curriculum in this relatively young discipline.

The panelists address the following topics:

" how software engineering curricula have evolved to present

" the present state of software engineering curricula
-addressing undergraduate and graduate

" trends for the near future
-addressing undergraduate and graduate
- discussing accreditation issues

* should Ada be an integral part of a software engineering curriculum

Participants in the panel include:

LtCol Rick Gross SAF/AQXA

Col Bill Richardson US Air Force Academy

Dr. Paul Jorgensen Research & Technology Institute of West Michigan

Dr. Gary Ford Software Engineering Institute

Dr. Mike Feldman George Washington University

39

Corporate Software Engineering Curriculum Needs

Richard R. Gross, Lieutenant Colonel. USAF
Qffice of the Assistant Secretary of the Air Force (Acquisition)

Washington, DC 20330-1000

My remarks come from the perspective of a consumer, rather than a producer,
of software engineering education. The U.S. Air Force is typical of today's large
technical industries in that our extrapolations to the year 2000 show demand for software
materially exceeding our capability to produce or otherwise obtain it. Thus, we are
critically dependent on a breakthrough that will alter this equation. Software engineering,
of all the technologies now on the horizon, has the best potential to achieve such a
breakthrough.

If software engineering is to alter the Air Force's supply/demand extrapolations
significantly, however, two things must happen. First, classical engineering discipline
must be applied to software. Such application, in turn, demands that we first learn how
to do this; only then can we insert this discipline into our educational curricula. The
second imperative, from the Air Force's perspective, is that we secure the services of an
adequate proportion of these educated software engineers.

While colleges and universities are working on the first problem, we in the
consumer sector can help them by pursuing the second. That is, in formulating and
publicizing specific software engineering needs, we consumers can provide a visible
incentive that will stimulate both the development of software engineering curricula and
their insertion into educational programs. To this end, I anticipate that we in the Air
Force will begin working soon with other governmental agencies and with the private
sector to make our needs for educated software engineers public. As a first step, we are
now working with the Software Engineering Institute to develop a definition of the term
software engineer that we can use to determine how many software engineers we currently
have and to forecast how many we will need.

We know of no other language that supports software engineering to the degree
Ada does. Because it is so critical that we move swiftly and completely to software
engineering, we have instituted a policy that Ada be used for all Air Force software
unless a compelling lifecycle cost-benefit case is made for an exception. Naturally, then,
we would prefer our software engineers to be facile in Ada and to have been educationally
grounded in it.

Remarks at "Curriculum Trends in Software Engineering" Panel of the Fifth Annual Ada Software
Engineering Education and Training (ASEET) Symposium, Alexandria. VA, August 15, 1990.

40

SOFTWARE ENGINEERING IN AN UNDERGRADUATE PROGRAM

William E. Richardson

United States Air Force Academy

Department of Computer Science

Over the past ten years, the precursors to software engineering curricula have been in development in both
graduate and undergraduate programs around the world. In particular, graduate schools have made
substantial headway in producing viable programs in software engineering. This progress stems from several
sources, including the DoD sponsored Software Engineering Institute (SEI) graduate curriculum and
innovative masters programs like the one developed by the Wang Institute. Additionally, the nature and
immaturity of the software engineering discipline, along with the relatively simple requirements for
developing a graduate program contributed to this progress in the graduate arena. There are now over a
dozen recognized graduate programs in software engineering.

It appears that software engineering programs currently exist at the masters level because of historical
evolution rather than absolute necessity and, indeed, some progress is also evident in undergraduate
programs. However, there are several issues which have retarded the development of undergraduate software
engineering curricula independent from computer science programs. The first problem is that much of the
core of computer science is a necessary foundation for the understanding of software engineering. Because of
this large common background, a complete break between the disciplines seems unjustified. Other issues
which do not promote an independent software engineering discipline include the relative immaturity of the
software engineering principles, the lack of appreciation among undergraduate students for the problems that
software engineering is trying to solve, the general cognitive immaturity of the undergraduate students, the
difficult interdisciplinary nature of software engineering, and the diverse application domain. There are
currently no complete, separate undergraduate software engineering programs in the US (although at least
two are on the drawing board).

However, there is one approach which has proven successful in producing a significant software engineering
emphasis within an undergraduate computer science program. This approach is to migrate software
engineering topics back from the masters curriculum into the senior year of an undergraduate computer
science program, and eventually into the earlier stages of a computer science program. (Note that a phased
Program Evolution Strategy" for a top down evolution of software engineering within a computer science

program has just been published by the SEI.) Many universities have taken this approach, but most have
stopped after migrating just a course or two into the undergraduate program. Although a good start, the
migration of optional courses does not meet the goal of producing professionals knowledgeable in software
engineering. It is not sufficient to layer software engineering as an application on top of the computer science
core; rather, a "software engineering core" must be developed and included along with the computer science
core.

The future will see more of this migration into the lower division courses of computer science programs.
However, for this method of developing an undergraduate software engineering program to succeed, the issues
noted above must still be explicitly resolved. Additionally, from our experience, substantial emphasis beyond
what is currently within a computer science program will be required for: issues of scale, analysis and design
experience, Ada, and software development environments and methodologies. The new computer
science/software engineering programs will also require a variety of courses tangential to the area of computer
science but which play a role in software engineering, such as management, communications, and engineering
design. They will also require a significant coordination of topics, concepts, and tools within the program and
a renewed emphasis on faculty development and coordination. This evolutionary approach will continue to
allow accreditation within the criteria of the Computer Science Accreditation Commission and will encourage
the Commission to draft new criteria to encompass even more software engineering oriented programs in the
future.

41

Position Paper: Curriculum Trends in Software Engineering
Gary Ford

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

The emergence of software engineering as a discipline mirrors the emergence of computer science
and of the various engineering disciplines. In very broad terms, the process begins with increasing
knowledge in a specialized area within an existing discipline, followed by the introduction of univer-
sity courses at the graduate level, the emergence of separate master's programs, the organization
and codification of the fundamentals and principles of the discipline, the infusion of the fundamental
material into the undergraduate curriculum, and finally the emergence of separate bachelor's pro-
grams. Most universities are at the second phase of this process, but over the next decade, some will
advance to the final phase.

Since its creation early in 1985, the Education Program of the Software Engineering Institute has
worked to accelerate and assist the development of master's level software engineering education.
This will continue throughout the 1990s, because almost all universities interested in this discipline
will begin with graduate programs. SEI recommendations for these programs are contained in the
annual SEI Report on Graduate Software Engineering Education.

Within the next five years, we expect to see the first undergraduate software engineering programs
established. These programs will develop slowly, partly because of the lack of good textbooks and
faculty expertise, and partly because much of the knowledge within the discipline is still being devel-
oped. Discussions of the design and evolution of undergraduate programs are presented in the
annual SEI Report on Undergraduate Software Engineering Education.

Perhaps the most critical factor in the development of undergraduate programs will be the matura-
tion and acceptance of software engineering as a true engineering discipline. Programming, as
currently taught in almost all computer science programs, is a craft not at all closely related to engi-
neering. In the traditional disciplines, engineers employ a number of mathematical and analytical
techniques that allow designs with predictable strength, behavior, performance, and reliability.
Software engineering is just beginning to develop similar capabilities:

A second critical factor is the necessary growth of faculty expertise in software engineering.
Although computer science research 30 years ago was firmly grounded in real-world problems, cur-
rent university research is increasingly aimed at solving abstract problems invented by scientists
who are not well connected to today's software engineering problems. Faculty will have to adopt the
philosophy and methods of engineering, both to teach and to conduct appropriate engineering
research, if undergraduate programs are to emerge.

Accreditation of undergraduate programs in software engineering is at least five and probably ten
years away. The accrediting bodies in computing, the Accreditation Board for Engineering and
Technology and the Computing Science Accreditation Board, only accredit programs that have
already produced graduates. Furthermore, they rely on accreditation criteria drafted by appropriate
professional societies. Recent ACM and IEEE Computer Society curriculum efforts indicate that the
societies do not yet recognize software engineering as an emerging discipline.

Nearly all of the significant issues in software engineering are unrelated to coding. However, neither
computer science nor programming will cease to exist when software engineering has matured as a
discipline and a profession, nor will software engineers be able to perform well without a reasonable
knowledge of programming. Ada embodies most of the good programming ideas of the 1970s, and is
the most widely available language that does. It is appropriate for programmers, computer scien-
tists, and software engineers to have some familiarity with it.

This work was sponsored by the U.S. Department of Defense.

42

Position Paper:. The Role of Ada in the Curriculum
Fifth ASEET Symposium,

Alexandria, VA, August 1990

Michael B. Feldman
Department of Electrical Engineering and Computer Science

School of Engineering and Applied Science
The George Washington University

Washington, DC 20052
202-994-5253

mfeldman@seas.gwu.edu

Ada's role in GW's curriculum goes back to 1982. Ada has been the required
coding language in our CS2-style course since 1985. At the graduate level, Ada
is a (large) part of our required programming languages course, and comes into
play in software engineering, concurrency, and compiler construction courses
as well.

Most readers of this position paper will know that I am something of a "fan"
of Ada. Surely Ada has many advantages to offer. It's not hard to teach to first-
year students, given the right books-which are finally starting to emerge-
and a sympathetic approach to schools on the part of the Ada compiler
vendors-which is still very uneven but a lot better than it used to be. And
Ada is a language that students can ,grr v into," which means it can be used as
the language of most of the courses further up in the curriculum.

Perhaps the most significant contribution of Ada to education is that the
standard is meaningfully enforced. Ada compilers support a language which is
really common across different machines and vendors. This is a breath of fresh
air to anyone who has tried to get upperclassmen, spoon-fed on Mr. Kahn's
Turbo whatzit, to move to Unix Pascal, or to port a non-trivial program from
one Modula-2 compiler to another. With Ada, the same books, the same
knowledge, the same teacher experience, and with some care, the same
programs, will work on any computer in the place (well, almost: we're still all
waiting for that cheap and fast Macintosh Ada compiler...). This
commonality-acceptance of a real -andard, detente in the "feature wars"-is
more than a convenience: it is a. important lesson for our students in
maturation and professionalization oi the discipline.

All this notwithstanding, I think we need to keep our perspective. What
should be the role of any programming language in the curriculum? The
students tend to place great emphasis on the language used in a given course.
Every student, seemingly, needs to know, in advance, "which language we'll
use." The students may be misplacing their emphasis; the teachers don't have
to go along with it. True, one usually needs a definite, compilable, language of
discourse for a class. But it shouldn't be the primary consideration.

43

Academic computer science has for decades been wracked by dissension over
the "breadth vs. depth in languages" issue. I also hear mixed messages about
this from my industry friends. My position? We are educating professionals,
not training worker bees, and therefore we need to understand some truths
about our chosen field:

* For forty years, one of the few constants in the computing field has been
rampant change. This is true of hardware, software, languages, and
everything else, and no end is in sight.

" Professionals need to have a solid grounding in the basic principles of
computing, including theory, architecture, and software, but also need-
-bove all, perhaps-to have a mind which is ready for change and open to
cnange.

" Coding is only a part of software engineering: language power surely makes
coding easier, but we cannot fall into the trap the students set for us by
emphasizing the details of today's annointed language over the larger
issues.

" Ada is-should be-today's language of choice for many in industry, but
there are other strong contenders out there too. With luck, the proponents
of emerging languages will follow Ada's lead and adopt meaningful
standards. But in any case, whether DoD likes it or not, in ten years I'm sure
we shall look back on Ada as a rather primitive creature. I believe that DoD
needs stability, not change, and so needs to stick with Ada, but the
computing world's bigger than DoD.

At GW we have adopted and sustained, over many years, a "breadth"
preference. Our undergraduates learn-in the "natural" courses-Pascal, Mac
Assembler, Ada, C, Fortran, and Lisp. They may not be real experts in any of
these, but that kind of expertise comes in the workplace anyway. If we are doing
our job right, their real expertise is in seeing that languages are all different but
in a way all alike, that the coding language plays an important but not
exclusive role in software engineering.

The computing world is best served by college graduates-and college
teachers-who are multilingual and ready for change, not by "Pascal bigots" or
"C bigots" or "Lisp bigots"-or, indeed, "Ada bigots." Our students need a sense
of proportion and balance. If they can't measure up to this standard, they'd be
better off in another field. Teachers-we, here, now-need proportion and
balance too.

44

The Place of Ada in an Undergraduate
Software Engineering Curriculum

Luwana S. Clever Charles B. Engle, Jr.

20 June 1990

Introduction

The Florida Institute of Technology (FIT) will introduce a new under-

graduate curriculum in software engineering in the fall of 1990'. Much time

and effort has been put into the selection of the "right" topics to cover and

the order in which to present them. It is now time to discuss some of the

engineering trade-offs that were made and why.

A complete description of the FIT undergraduate curriculum can be

found in [Mills90a]. This paper, which was presented at the Software En-

gineering Institute's Conference on Software Engineering Education, dis-

cusses the role of universities in software engineering education. Detailed

'The opinions expressed here are those of the authors and may not accurately reflect

those of all faculty members concerned with this project. Care has been taken to attempt

to represent the consensus of opinion, but since the program will not start until Fall '90,

anything mentioned in this paper is still tentative

45

listings of courses and course content can be found in this paper. In ad-

dition, considerations of transitional courses for current computer science

majors and "service courses" for other departments are discussed.

The methodology that will be used at FIT for undergraduate instruction

is the cleanroom software engineering techniques pioneered by Dr. Harlan

Mills [Mills90b], and box structures [Mills87, Mills88]. Complete discussion

of this methodology, and its underlying philosophy, is beyond the scope of

this paper. Instead, this paper is limited to a discussion of why the deci-

sion was made to use Ada as the language of choice for all undergraduate

software engineering instruction. This was not an easy decision. There are

many that would claim that Ada is "too complex" or perhaps "too big"

to be used for freshman level instruction. We believe that this is a false

impression.

Note that we do NOT advocate the use of a Pascal subset of Ada.

Rather, we believe that students should be exposed to concepts and ideas

which support good design and software development practices using a

software engineering approach. The student should be given the tools with

which to implement these concepts at the time that the concept is dis-

cussed. This means that students quickly outgrow Pascal and need the

more powerful features and constructs in Ada to support the concepts that

they are learning in class.

For example, in programs which use interactive input-output, there is

46

little protection for the Pascal programmer if data entry is erroneous. The

program simply bombs! The alternative is to teach the student to read

everything as a character string and then do the conversions to the appro-

priate type in the program. This is awkward and unnecessary since it is

not a part of the solution to the original problem, but an artifice of the

limitations of the programming language.

With Ada, of course, the proper means for solving this problem would

be to design the program as a solution to the original problem without the

need to compensate directly for potential input-output errors. Incorrect

data entry would automatically be detected by the runtime system and can

then be handled appropriately by the student within the bounds of the pro-

gramming language without the unnecessary, even unnatural, contortions

required by Pascal.

We studied this and other problems in teaching students a "smaller,

simpler" language first, followed by a transition to a more powerful language

when necessary. We concluded that the attendant mind-shifts were more

difficult for the average student than providing him or her with the proper

tool from the very beginning. The factors which weighed in this decision

are described in the remainder of this paper.

47

Advantages of Ada

Ada offers many advantages as a base language for our curriculum. It is

rich enough to be useful for most programming concepts. It is a practical

language, finding widespread acceptance in government, and thus, indus-

try. It is an expressive language allowing less constrained design trans-

formations. It is widely available as a standard which is certified correct

(actually certified as conforming). It was designed, even engineered, to

support the very concepts of software engineering that we are teaching our

students. For these, and many other reasons, Ada has been adopted as the

base language for our curriculum.

Ada is the first programming language that was created with the en-

gineering process. It was engineered to support good software engineering

practices and concepts as we understand them. As such, Ada was not

an evolutionary language wherein new features are spliced onto a base-

line shell. Rather, the Ada language was designed and developed like any

other software product. This effort was initiated by soliciting and obtain-

ing a series of requirements for the new language. These requirements were

then refined by widespread public review into a set of specifications upon

which a design could be developed. This preliminary design was also given

widespread review and a final design for the language was approved, before

any implementations of the language existed. This was a novel concept in

48

the design of programming languages; obtain consensus on the requirements

before implementing it! This shows that Ada was designed and engineered

to perform specific functions, prominent among them was the support of

software engineering concepts.

The concepts which Ada was expressly designed to support, according to

[Booch87], include abstraction, information hiding, localization, complete-

ness, modularity, reliability, maintainability, reusability, and extendability,

among others. This list gives credence to the claim that the design of

Ada was intended to support modem software engineering concepts and

practices as we understand them. Arguably, the implementation of the

language, manifest in numerous compilers on numerous machine configura-

tions, provides the much needed support for Software Engineering that has

been missing in older languages.

The support of modem software engineerirg practices and concepts is

very important. If a language is very rich in expressivity, then it becomes

less difficult and less error prone to translate the problem to be solved from

the design space to the solution space. If the language is somewhat limited

or constrained in its expressive power, then the mapping from the design

space to solution space is more difficult. For example, if the design of a so-

lution to the problem at hand conceptually requires the abstract notion of

parallelism, then if the language in which the design is being implemented

supports parallelism, this portion of the solution can be directly mapped

49

from the design to the implementation. If, on the other hand, your language

does NO T support parallelism, then you must serialize your conceptual par-

allelism, which means that you must introduce additional complexity into

the implementation to achieve the effect of your design. This necessarily

perturbs the design and makes maintenance more difficult. In summary,

the more powerful the language in terms of expressivity, the more easily you

can map the design to the implementation without introducing additional

complexity [Mills90a].

In view of the foregoing, the rich set of constructs and programming

expressivity available in Ada make it the logical choice for our curriculum.

While some may argue that the language is "too big" or "too complex"

for freshman, we take the opposite view. It is our view that we need only

acquaint the student with that portion of the language which is necessary

for them to solve the problems that we provide. In time, this will be

the full language. What we obtain from this is the ability to go from

simple sequential concepts to more complex ideas, such as parallelism or

genericity, without having to transition the student from a smaller, less

powerful language to Ada. They will have been using the same language

since the first programming assignment!

50

Disadvantages of Ada

It would be unfair, or at least one-sided, to present only the positive

aspects of the use of Ada. We acknowledge some undesirable items that

we must either overcome or for which allowances must be made. We will

mention some of the more prominent disadvantages that we have encoun-

tered and what, if anything, we have decided to do to compensate for these

shortcomings.

Perhaps the biggest disadvantage of using Ada, at least from our per-

spective, is that there is a rather significant overhead penalty which must be

paid, even for small, simple programs. This overhead is due to the loading

of runtime routines providing exception detection, and possibly handling,

as well as the loading of the support system for parallel program units

(tasking), even if they are not used in the unit being compiled. In fact,

a complete runtime system capable of operating sans operating system is

provided by the Ada compiler. Thus, a small program may well cause the

generation of a substantial executable image!

In large programming systems, this overhead is usually insignificant.

However, at the freshman level, where programs are very short and very

simple, this overhead is unusually expensive relative to the size of the pro-

gram. Not only will the executable image be disproportionally large, but

the time to compile the code will be longer than expected due to the added

51

time needed to generate the load module. Usually even the execution time

will be adversely affected by this unnecessary overhead.

Since this runtime overhead is a requirement of the Ada language, there

is little that we can do to avoid it. In the absence of some compiler directive

or pragma which allows the suppression of the linking of these unnecessary

runtime modules, we can only mention them to the student. As time goes

en, the proportion of this runtime overhead to their program will decrease,

until, eventually, when they are writing programming systems instead of

programs, ithey will not even notice the overhead. Until then, there is

nothing that we can do.

Another shortcoming of Ada is the fact that input-output (I/O) is 1uot

a part of the language. Instead, the I/O features were supplied by a prede-

fined package. This makes good sense since the package is the natural way

to extend the language . However, it does cause some difficulties as any

instructor that has taught Ada is well aware.

First, '"hei "tenc of I/O fc'r nuu,,ri- types necessitates that the user

create a generic instantiation of a predefined numeric I/O package in order

to be able to read or write numeric values. The particular reasons for this

mechanism of I/O are not within the scope of this paper, except to say

that it is a prudent and appropriate means of providing a robust, even

efficient, I/O mechanism. However, the instructor is typically left with a

chicken-and-egg situation with regard to numeric I/O. In order to do I/O

52

the student must be familiar with generics (or at least generic instantiation),

but the need for numeric I/O occurs long before the introduction of the

topic of generics. The problem heretofore has been how to overcome this

difficulty.

Numerous solutions have been presented. They range from the bad to

the worse. One method is to launch into a description of generics early, with

some limited specification of what they are and how they are used, followed

by a more complete discussion at a later time. This can be confusing to

the student, but if handled properly, can be compared to Boehm's spiral

method [Boehm88] for software development, and made quite effective.

Another method is to show the student the format for generic instantia-

tion with little or no explanation. This saves confusion. On the other hand,

the trust me, I'm the instructor method is not pedagogically satisfying. It

makes the whole process appear to be done with smoke and mirrors, as if

by magic!

Another approach is to define a package for the students with all of

the predefined numeric types pre-instantiated. This allows the instructor

to refer to a BasicIO package and not have to explain numeric I/O instan-

tiations. The student merely uses the BasicIO package and all of the I/O

they need is provided. The drawback to this method is, of course, that only

the predefined numeric types can be handled in this manner. This, then,

restricts the instructor to using only the predefined numeric types, and lim-

53

its the use of good software engineering practices wherein the student will

specify new types for each new situation and perform a domain analysis to

determine ranges of values and degrees of precision. Thus, pedagogically,

this is not a viable solution in our environment. We reasoned that there

must be other ways.

Our solution to this problem is a compromise with our desires and the

design of Ada. We will teach the students to use subtypes of the predefined

numeric types, wherein the subtype will have a unique name and a range

or precision as determined by domain analysis. However, since they have

defined a subtype and not a type, compatibility remains for all existing

predefined operations. The use of a BasicJO package is now a possibility

owing to the compatibility of the subtype for the base type. This method

does not allow Ada to enforce the prohibition of the mixing of dissimilar

types, since all of the types are subtypes, but it is an acceptable compromise

with which to start. Later, we will introduce the use of types and at that

time introduce the concept of generic instantiation for these types.

Finally, another shortcoming of Ada that has slowed its introduction

into mainstream computer science/software engineering programs is the

lack of a good textbook at the CS1 level [ACM78]. This we see as a short

term problem since new textbooks are being introduced at an increasing

rate. Several textbooks on the horizon have made a commitment to using

Ada in CS1 level instruction. Another more immediately available alter-

54

native is to write your own textbook. That is the solution that we chose,

since it allows us to introduce Ada, but more importantly, it allows us to

introduce software engineering in a way that we think is appropriate for

our students.

I Can't Use Ada Because ...

One of the arguments made against the use of Ada on such a large

scale at the undergraduate level is the lack of availability of compilers. To

counter this problem, we contacted several compiler vendors. We found

that there were actually several compiler vendors that were willing to make

very attractive arrangements with an educational institution. After careful

consideration we chose to accept the offer of Meridian Software Systems,

Inc.

In essence, the arrangement with Meridian allows our students to pur-

chase fully validated Ada compilers for their IBM-compatible machines.

The compilers can be obtained on 3. or 5" diskettes and are provided

with sufficient documentation for easy installation and use. The compilers,

though fully validated, are student editions. This merely means that the

number of libraries is limited .(to two) and that the number of units that can

be placed in the library is limited (to approximately 200). Neither of these

limitations is likely to affect student programs; indeed, we use these same

55

compilers for our graduate students in their coursework without significant

limitation. The students are required to pay $50.00 for this compiler.

Meridian has recently notified us that they will also initiate this summer

an Ada student version for Macintosh computers. This version of their

compiler will also cost $50.00, but will require that the student already own

Macintosh Programmer's Workbench (MPW). This is necessary because

Meridian's Macintosh version actually runs under MPW. In any case, this

action by Meridian will extend the accessibility of Ada compilers for our

students.

The process used to obtain the compilers is simplicity itself. On the first

day of class we describe the compiler to the students and recommend that

they purchase it. A count is taken of those students that want to obtain a

compiler. The instructor then calls Meridian (using their toll-free number)

and tells the educational assistant how many compilers are needed. The

compilers are then shipped via overnight mail and arrive in time for the

student's next class. Each student then pays for the compiler as they pick

it up.

The logistics of this mode of operation are attractive to Meridian be-

cause they can sell multiple compilers with only one shipping and handling

operation. For this reason, they sell the compiler to the school for $40.00.

Thus, even when the school pays for the shipping charge (a flat $25.00),

there is still some excess money which can be used to purchase additional

56

compilers for lab machines, etc. This arrangement is a mutually benePcial

deal for students, the school, and Meridian.

We fully realize that this sort of arrangement is possible because we are a

private institution. Public institutions may not be able to avail themselves

of this opportunity, due primarily to legal considerations. In that case, each

student can deal directly with Meridian for the purchase of their compiler.

Note also that we never force a student to purchase this, or any other,

compiler. The option is always available for the student to purchase a dif-

ferent compiler or to use one of the compilers provided on the lab machines.

Another argument made against the use of Ada is that there are in-

sufficient environment tools available for student use. We also found, and

are currently negotiating for the use of, a complete environment tool which

features many useful support aids for our students. Among these are an

on-line version of the Reference Manual, an on-line help facility, interactive

use of the compiler, an emacs-like editor, CAI, randomly generated exam-

ination questions with automated grading and record keeping, password

protection on all directories, and the use of a network and communication

facilities so that a single copy of the environment is needed. We have not

yet made a firm commitment for the use of this or any other environment

so we cannot offer any more details at this time.

In short, we are introducing a new undergraduate curriculum and need

new, more powerful tools to support it. We feel that the use of Ada as our

57

language of choice, supported by compilers and an environment, will aug-

ment our curriculum and make a more meaningful educational experience

for our students.

Conclusion

We have tried to avoid the pitfall of many papers in this genre which

read like a this is what our program looks like. Instead, we have attempted

to explain why our curriculum designers made the decision to use Ada as our

base programming language in our new undergraduate degree in software

engineering. It is still our opinion that the firm commitment to Ada that

we have made is the proper decision given all of the data we assembled.

Time alone will tell if we are correct!

Bibliography

ACM78 Austing, R.H., Barnes, B.H., Bonnette, D.T., Engel, G.L., and

Stokes, G. "Curriculum '78: Recommendations for the

Undergraduate Program in Computer Science."

Comm. ACM 22,3 (Mar. 1979), 147-165.

58

Boehm88 Boehm, B.W., and Papaccio, P.N. "Understanding and Controlling

Software Costs." Transactions on Software Engineering 14,10

(Oct. 1988), 1462-1477.

Booch87 Booch, G. Software Engineering with Ada. Menlo Park:

Benjamin/Cummings, 1987.

Mills87 Mills, H.D., Linger, R.C., and Hevner, A.R. "Box Structured

Information Systems." IBM Systems Journal 26,4

(Apr. 1987), 395-413.

Mills88 Mills, H.D. "Stepwise Refinement and Verification in

Box-Structured Systems." Computer 21,6 (Jun. 1988), 23-36.

Mills9Oa Mills, H.D., Newman, J.R., and Engle, C.B. Jr. "An

Undergraduate Curriculum in Software Engineering." Software

Engineering Education, Norman E. Gibbs, ed. New York:

Springer-Verlag, 1990, 24-37.

Mills9Ob Mills, H.D. "Cleanroom Software Engineering." Aerospace

Software Engineering, C. Anderson, M. Dorfman, and D. Hall, eds.

AIAA, 1990.

59

This Page Left Blank Intentionally

60

PROGRAM DEVELOPMENT AND ADA

A Paradigm for Teaching Programming to Lower
Level Computer Science Majors

Robert A. Willis Jr.
Hampton University
Department Of Computer Science
Hampton, VA 23668

61

Introduction
Despite the best efforts of their instructors and the formidable motivation found in most modem
texts, freshman and sophomore computer science students tend not to follow any program devel-
opment methodology when writing programs.

The first few programming assignments are usually simple and small. They are attuned to building
confidence and developing manual skills. Students develop a false sense of security, they "know"
that they can successfully write programs while ignoring the foundations of good programming
practices. Their delivered products are properly formatted and commented, the programs "look
good". But what about the development process? Did the students do any significant "front-end"
work? All too frequently the answer is "NO" and as their program assignments become linearly
more difficult, students find that the intellectual effort required to complete assignments increases
exponentially.

Asking students to deliver specifications and a top-down design is not enough. These documents
are often written after the program is finished, and if we (the instructors) request them prior to the
coding stage many students have more difficulty creating a complete design than the actual pro-
gram itself' The concepts of step-wise refinement, modularity and top-down design have to be pre-
sented to students in a manner which fosters understanding and appreciation of their elegance and
power. This paper discusses a paradigm that seeks to inculcate the use of proper program develop-
ment in our students.

The Concept of Incremental Program Development (IPD)
When we assign a programming exercise to our students, we generally include a comprehensive
specification, one or more data files (or a sample of expected output), and a due date. We then ex-
plain the exercise and perhaps "walk through" the basic processing steps. It is now up to the stu-
dents to write, test, and deliver the program by the due date. We are all aware of the agonizing
process that most of our students go through. Incremental program development assures the use of
step-wise refinement, modularity, and top-down development by our students.

Instead of one due date students are assigned a series of intermediate due dates, each with specific

expected results. Each ensuing delivery encompasses progressively more difficult aspects of the
assignment. Stidents are expected to present a design and a working program at each stage. This
incremental delivery process forces students to focus on one specific aspect of the problem at a
time (step-wise refinement) and to mentally and physically (desiga and code) solve the problem
beginning with a fundamental system model (top-down development). If we are careful in the stip-
ulation of expected results for intermediate deliveries our students receive invaluable "hands on"
training regarding step-wise refinement, modularity, and top-down development. Equally impor-
tant is the immediate feedback the student receives with each delivery. Critical design errors and
instances of non-conformance to specifications are found early and can be easily corrected.

When the final due date arrives the entire program is delivered and a grade is given.

62

Why Ada?
I have used IPD in courses featuring both Pascal and Ada and found that Ada is the superior tool
when using the IPD paradigm.

FIGURE 1. A First Programming Example

- in the tollowing section we obtain the modules we need to write text.
- and real (numbers) to the screen. Remember that these enities are
- not the sme and require different procedures (modules) to write them to
- your screen. We may ue the same names but the actual code is different.
- since these modules are given to us we don't see the code., we just use
- the modules.

with TextjO, - Write text to the screen
with Float exLl,- Write real (float in Ada) numbers to the screen

procedure One is

- Programming Assignment One
- Your name
- date copied and run
- description of problem

Debt: constant:- 300.0;- Original value owed
Payment constant: 22.4;- Payment
InterestRate: constant:- 0.02;- Interest rate

Charge.- Interest times debt
Reduced,- Amount debt is reduced
RemainingBalance: Float;- Remaining balance

begin - One
Charge:- InterestRate * Debt;
Reduced:- Payment -Charge
RemainingBalance:- Debt - Reduced;
TexLIO.Put ("Payment ");- Note that we use the TextlO module here.
FloaLText-LO.Put (Payment); - Note that we use the F1oaLText-lO module.
TextIO.NewLine;
TextlO.Put ("C'harge ");
FloatLTextjO.Put (Charge);
TextlO.NewLine;

c,:xtlO.Put ("Balance Owned);
FloatTextlO.Put (RemainingBalance);

end One;

Modularity

Students initially benefit most from Ada's concept of modularity. Simply writing the classic "Hello
World" program is a good illustration. The program must import TextlO in order to produce out-
put. As instructors, we can use this necessity as a small case history concerning modularity, explain
what modularity is, why the benefits far outweigh the trouble of using with statements, and pack-
age instantiations (if necessary). We needn't discuss what a package instantiation is, or go into the
gory details of what TextJO really is, just enough to show that modularity is an important concep-

63

tual tool. Students are forced to think in terms of single purpose units.

The program1 shown in figure 1 is an exercise which explicitly illustrates the point. Students are
required to input and run it. The example purposely uses the module FloatText_102 rather than
instantiate a new package in the body of the program unit. I have found that this method is easier
understood yet still conveys the essence of modularity. Here the essential issue is that text and real
numbers are different, that it requires different code to write them to a terminal screen, therefore
we need separate modules to perform the work. Using the qualifiers Text_10 and FloatText_10
further demonstrates that different modules are in use. Figure 2 depicts a possible top level graph-
ical design.

FIGURE 2.'Top Level Graphical Design for Program Unit: One

One

Text 1O Float Text 10

........

Ada allows us to implant the idea and convey the significance of modularity to students with its
very first examples of working programs. It is important to note that this is done naturally and in a
form which (since it is part of the language) is entirely consistent with later use.

Of course what we are really exploiting are Ada's separate compilation and data abstraction (pack-
ages) features. But we do it in a manner which is relatively "painless" to students. We are also be-
ginning to build towards a more complete understanding of data abstraction than is usually possible
when using Pascal.

It is very difficult to properly treat data abstraction with Pascal. Procedures in Pascal are more
properly process abstractions than data abstractions and most students have difficulty discriminat-
ing between the two. Process abstraction is rarely discussed, but discussions of data abstraction and
the examples usually given (input/output and some standard mathematical functions) while excel-
lent examples of data abstraction consistently miss the mark because their use is so transparent.
Students are simply not yet sophisticated enough to fully grasp the concept and when confronted

1. Dale, Nell and Weems, Chip, "Introduction to Pascal and Structured Design", P.92 2nd Edition D.C.
Heath and Company (1987)

2. Digital Equipment Corporation Ada for VAX/VMS

64

with Pascal's lack of true abstraction many are more confused about data abstraction than enlight-
ened.

In CS 2 the lack of true data abstraction in Pascal is particularly bothersome. One encounters prob-
lems whenever data structures are discussed. The stack as an abstract data type is an excellent ex-
ample of this. The concept of a stack can be completely specified and thoroughly explained to each
students satisfaction. The Pascal implementation, however, undermines the conceptual model
simply because the data type StackType and all stack operations must be declared as global entities
in the using program unit. Students often question this discrepancy and regardless of the explana-
tion relegate data abstraction to the "ivory tower concept often preached but never practiced" cat-
egory. Worse yet, many of them attempt to take advantage of their knowledge of the
implementation and write code which manipulates the stack from their program, instead of using
the proper procedures.

A preliminary survey 3 of CS 2 students revealed that 55% accessed the stack (or other abstract
date type) using its operational procedures only because the instructor indicated that it was neces-
sary. Only 20% of the students could fully explain the concept of abstract data types. The same
survey given to a group of students in a beginning Ada class revealed that 85% could fully explain
the concept and 95% appreciated the benefits of its use. It should be noted that 97% of the Ada
students had completed CS 2, but a sample survey of CS 7 (Data Structures and Algorithms) stu-
dents who did not take Ada indicates that the majority of them had significant problems with the
concept of data abstraction.

Exception Handling

Ada's exception handling facilities are invaluable as a program development tool. Unlike Pascal,
which does not implement exception handling, they allow the instructor to discuss program robust-
ness and graceful termination in a rational manner. It is very difficult to illustrate program robust-
ness in Pascal because examples typically demonstrate specific solutions to a particular problem
rather than depict general solutions to a class of problems. Worse yet, the programmer is often
forced to obfiscate his code significantly in order to create a robust product.

Ada presents beginning students with a "clean" uncomplicated set of predefined exceptions, each
of which addresses a class of errors which commonly occur. It also allows more advanced students
to define their own classes of exceptions. Students may elegantly include error handling as an in-
tegral part of their designs.

IPD and Ada
Critical to any program development is the design phase. In this phase, program specifications and

3. A small sample survey. A larger sampling of students from at least two different Computer Science
Departments will be conducted shortly.

65

delivery schedule show students how a problem can be partitioned and solved, in other words, how
to approach the design of a program. An extremely important facet of the IPD paradigm, is that
students are continually receiving concrete guidance in program design.

Equally important the specifications usually provide a good indication as to how the program
should be modularized, when an Abstract Data Type (ADT) should be defined, and the type of ex-
ception handling which will be required. All of these can be directly translated into Ada code. Mod-
ules can be built, separately compiled and tested as necessary. ADT's can be similarly designed,
implemented, and tested without regard to the logic of any specific application. User defined types
can be properly defined and I/O instantiated for them. This allows students to build-in true excep-
tion handling and begin to learn what reliability is all about.

An Example of Incremental Program Development 4

1.0 Design and write a program to solve the following problem:

1.1 Eastern Shore Airlines schedules 6 daily flights from Salisbury, Maryland to Dover,
Delaware. Demand for these flights is so high that customers are placed in one wait-
ing list and will only obtain a flight in turn. Create and maintain a flight list for the
airline. Each flight carries a maximum of 5 persons.

2.0 Input:

2.1 Filename: FlightData.DAT.

2.2 Each line of input contains:

• the request: "DEPART", "ADD", "CANCEL", "FIND", or "LIST' in columns
1-6

and unless "LIST'' or "DEPART' is requested, the passenger's name in col-
umns 12 - 31.

* You may assume that the format is correct.

3.0 Processing:

3.1 The five types of requests should be handled as follows:
" If the request is "DEPART," then the next flight will depart. The flight number

and a list of passengers is also printed.
* If the request is "ADD," then the given passenger wants to be added to the

flight list.

4. Collins, William J., "Intermediate Pascal Programming: A Case Study Approach". McGraw-Hill
(1986)

66

• If the request is "CANCEL," then the given passenger should be removed from
the flight list.

* If the request is "FIND," the value output should be "YES - ON FLIGHT
LIST" or "NOT ON FLIGHT LIST."

* If the request is "LIST," then the flight list should be printed.
3.2 The following exceptional cases should be noted:

* If the request is not one of the five described above, the error message "ER-
ROR-ILLEGAL REQUEST" should be printed.

" If the request is "DEPART" and the passenger list is empty, then the message
"EMPTY FLIGHT flight-number DEPARTING" should be printed.

" If the request is "ADD" but the passenger is already on the flight list, then the
error message "ERROR - DUPLICATE NAME" should be printed.

* If the request is "CANCEL" but the passenger is not on the flight list, then the
error message "ERROR - NAME NOT ON FLIGHT LIST" should be printed.

3.3 Processing ends when the last flight has departed.

4.0 Output:

4.1 All legal messages and conditions for output are detailed in the previous section.
Please ensure that your output is neat and readable.

5.0 Delivery dates:(21 days total elapsed time)

5.1 First delivery date (3 days elapsed time)
" The program should be able to read and echo print each command found in the

data file.
* Simulate processing by issuing appropriate statements for each command.
" Implement exception handling for all illegal command.

5.2 Second delivery date (2 days elapsed time)
• The program should now be able to print all passenger names. A passenger's

name is printed to the immediate right of the appropriate command.

5.3 Third delivery date (5 days elapsed time)
* The "ADD" and "LIST" commands are implemented. Duplicate names are al-

lowed.
5.4 Fourth delivery date (5 days elapsed time)

* The "DEPART" and "FIND" commands are implemented. Duplicate names are
no longer allowed.

5.5 Final delivery (6 days elapsed time)
* The "CANCEL" command is implemented.

67

5.6 An appropriate design will accompany each delivery.

The First Delivery

The first delivery forces students to consider the basic logical structure of the finished product
without concern for lower level details. A possible graphical design for the initial delivery is de-
picted in the following figures. All students are expected to present a set of designs with their initial
delivery. Arriving at this set of designs should be easy for them because the delivery does not re-
quire detailed lower level processing. They are focussing only on basic input and error handling.

FIGURE 3. Top Level Design: Flights

Flights.dat

Given the description of the problem (and recent class discussions) it should be clear that a queue
data structure will be necessary. The top level design indicates this and the fact that it will be sep-
arate entity (what type of entity is not decided here). Top level designs not including it are consid-
ered deficient.

FIGURE 4. Second Level Refinement: Flights

Flights.dat

68

FIGURE 5. Further Refinement: Process Command

FIND

Exception LIST

We have now arrived at a design which fully complies with its specification. Fortunately, the de-
livery specification was posed so that the problem of designing the basic processing of the program
was forced upon students at an early stage. The design details for this delivery are really the high-
level design details for the final product. This clearly illustrates the power of IPD to motivate top-
down design. These points need to be emphasized to the students and an example of a bad delivery
specification and ensuing problems should be examined.

The design can now be translated to Ada code and tested thoroughly. If testing reveals any flaws
the design can be revised. Revising the design (and subsequent code) at this stage is relatively in-
expensive because dependent lower level details have been excluded from the design and code

Going to code at this early a stage in program development is also important in that it provides stu-
dents a controlled method to satisfy their urge to start generating code. Code generation in this case
is not premature because it logically follows the development of a valid design. Students are more
apt to actually design first because they are not designing the entire program at once, just a small
manageable portion (step-wise refinement).

The following figure contains code based on the design. No references are made to a queue to sim-
plify delivery. Please note that the more ambitious students may be inclined to include procedure
stubs and actual calls to them from within the case statement. This is erroneous, in that a raft of
antecessor (at this level) details must be considered. Issues such as interfacing, file manipulation,
among others should not be considered, at this time, because they hide a host of subordinate details.
Remember that, at this stage, we are interested in a high level design and in general, we are attempt-
ing to develop the program incrementally.

69

FIGURE 6. Flights.ada

with Text-lO,
use TextJO;
procedure Flights is

- ** This delivery of the program should be able to read and echo print
-- each command found in the data file.
--Simulate processing by issuing appropriate statements for each
--command.Implement exception handling for all illegal commands.

-- Which means that the basic intelligence of the program must be
-- implemented. This is accomplished by the use of a case statement

type Command-Type is (DEPART, ADD, CANCEL, FIND, LIST); - List of commands

-- Packages required to manipulate Queues and Enumerated 10.

package Command-TypeJlO is
new Enumeration JO (Command-Type);

use CommandType-l,

-- Variables

Command: CommandType;
InputFile: File-Type;

begin - Flights
Open (Input_File, InFile, "Flight_Data.dat');

-- Processing begins. Use of case statements allows easy handling of
-- the different commands.

while not EndOf_File (InpuLFile) loop
begin - Exception block for incorrect commands

get (Input-File, Command);
Put (Command);
case Command is

when DEPART => PutLine ("Flight Departing");
when ADD -> Put_Line ("Adding Passenger");
when CANCEL => PutUne ("Cancelling Passenger");
when FIND => Put-Line ("Finding Passenger");
when LIST => Put_Line ("Flight List');

end case;
NewLine;

exception
when DataError >

Put ("ERRONEOUS COMMAND");
New-Line;

end, - Exception block for incorrect commands
Skipjline (InputFile);

end loop; - while not End-Of-File
end Flights;

70

Remaining Deliveries
Remaining deliveries are focussed on implementing individual processes and the queue. Imple-
mentation of the queue can be delayed until delivery three. Ada provides a number of implemen-
tation options here. The processes can be written as in-line subprograms within Flights.ada as in
Pascal. They can be written, separately compiled and linked to Flights as subunits or using the with
statement. The queue will almost certainly be implemented as an abstract data type (Package), but
students must decide whether to make it generic or not. Each of these approaches should be thor-
oughly discussed.

It is during this phase of the program's development that Ada is most beneficial. Using separate
compilation (in this case subunits) students concentrate on the development of one module at a
time. Each module will be designed, coded, tested, and finally included into the main program. De-
cisions concerning interfacing, internal data structures, and processing are made largely in isola-
tion. If, during testing, faults are discovered the source can only be in the module being developed.
Students enrolled in the lower level CS courses have a tei Jency to make wholesale changes to their
code in order to "get something working". Too often when they correct one problem they create
another.

Using Ada they recognize that a previously designed and tested increment is not the cause of the
error because additions to the program are created in a totally separate module, therefore it makes
no sense to attempt to correct it by modifying previously generated code. Instead, they should con-
centrate their efforts on the module being developed. Modularization in the form of separate com-
pilation reduces the frequently overwhelming bulk of code confronting students and serves as a
conduit to properly channel their efforts. Ada continually serves as a practical tool to illustrate
many of the concepts we attempt to convey at the lower level. Students are not only being educated
about these concepts but they are being correctly trained in their actualization. They are properly
developing program construction and organizational skills using a modem, no compromise, "real-
world" mechanism.

Delivery Three

Implementing the Queue

Space does not permit complete development of the Flights program, therefore only the develop-
ment of increment three will be illustrated. This delivery mandates the implementation of a queue,
the provision to ADD a passenger's name into the queue, and the ability to LIST its contents.

If a generic queue package has been developed and tested, the decision should be to reuse it. I ad-
vise this strategy, because it serves as a good example of reuse, as well as, the elegance of abstrac-
tion and its usefulness when fully incorporated into a programming language.

The following figure contains the generic queue's specification.

71

FIGURE 7. Specification: Generic Queue

generic

type ITEMTYPE is private;

package GENERICQUEUEPACKAGE is

-- This is a rudimentary generic queue package. The queue is implemented
-- as a linked list with the type of elements determined by the
-- user.

-- USER INSTANTIATION NOTES:

--package SOME-QUEUE is
--new GENERICQUEUEPACKAGE
-- (ri'EMTYPE => SOMETYPE) :

type QUEUE-TYPE is private;

procedure ENQUEUE (ITEM: in ITEMTYPE; QUEUE: in out QUEUETYPE);
-- Places item into the rear of the queue.

procedure DEQUEUE (ITEM: out ITEMTYPE; QUEUE: in out QUEUETYPE);
-- Removes item from the front of the queue

procedure CLEAR_QUEUE (QUEUE: in out QUEUE.TYPE);
-- Clears the queue

function ISQUEUEEMPTY (QUEUE: QUEUETYPE) return BOOLEAN;
-- Returns TRUE if the queue is empty FALSE otherwise

EMPTY.QUEUE_ERROR: exception; -- Raised when attempting to dequeue an
- empty queue.

private
type QUEUENODEYYPE;
type QUEUENODEPOINTERTYPE is access QUEUE-NODETYPE;
type QUEUENODE-TYPE is record

ELEMENT: ITEMTYPE;
NEXT: QUEUENODEPOINTER_TYPE;

end record;
type QUEUE-TYPE is record

FRONT: QUEUENODE_POINTERTYPE;
REAR: QUEUE-NODEPOINTERTYPE;

end record;

end GENERICQUEUEPACKAGE;

Design Issues

Given the specifications for add and list and the state of the program after the second delivery, com-
pleting the design for this delivery should be relatively straight forward.

72

Sample designs for ADD and LIST are shown in the following figures.

FIGURE 8. Design: Module ADD

This is a case in which each design module can be nearly translated one-to-one into Ada code. In
fact, the actual implementation of ADD can be made in-line.

FIGURE 9. Design: Module LIST

Flights.dat

FIGURE 10. Design: SubModule: List Passengers

Get Names
Dequeue from a temporary

Queue.

Print the name.

Quit when the temporary
Queue is empty.

In this case it is advisable to create a procedure List_Passengers to output the names of the pas-
sengers.

73

FIGURE 11. Flights with ADD and LIST implemented.

with GenericQueue Package;
with TCxLIO0;
use Text-1O;
procedure Flights is

-- ~ This is the third delivery ADD and LIST are implemented.

MaximumNamej..ength: constant:= 20,

Column in input file at which the Name of a passenger starts.
-We have to use Text_IO.Positive_Count as the type because when
-we use the SetCol procedure a number of this type
-is required.

Start_OfName: constant Text_1O.Positive..Count:= 12;

subtype Nameffype is String (L..MaximumName_Length);
Blank-Name: constant NamejType:= " .

type Command-Type is (DEPART, ADD, CANCEL, FIND, LIST);

-Packages required to manipulate Queues and Enumerated 10.

package Name...String-Queue-.Package is
new Generic-.Queue..Package

(Item-Type => Nameffype);

package Command-Type-IO is
new Enumeration_10 (Commandype);

use Name-.Srng-Queue-Package;
use CommandType-1O;

-Variables

Command: CommandType;
Name: Name-ype;
Input-File: File-.Type;
Name-Queue: Queue-Type;

-Get the names from the file

procedure Process-Name (ProcessedFile: in out FileType;
Processed .Name: out Namieype) is separate;

-List the passengers in the queue

procedure List-Passengers (AQueue: in Queue-Type) is separate;

begin - Flights
Open (Input-File, In-Fi~le, "Flight-Data.dat");

74

-Processing begins. Use of case statements allows easy handling of
-the different commands.

while not End.Of_.File (lnput..File) loop
Name:= Blank-Yame;

begin - Exception block for incorrect commands
get (Input_.File, Command);
Put (Command);
case Command is

when DEPART => Put-Line ("Flight Departing");
Skipjine (Input..File);

when ADD => Put (Command);

ProcessNamne (Input,_File, Name);
Put (Na~me);
Put ("added to the Flight List.");
Enquene (Name, Name Queue);
New-Line;

when CANCEL => Put ()

Process_.Name (Input_.File, Name);
Put (Name);
NewLine;

when FIND => Put(")
Process-Name (Input-File, Name);
Put (Name);
New-.Line;

when LIST => Put (command);
Skip Line (input-File);
List-Passengers (NamneQueue);

end case;,
New...Line;

exception
when DataError =>

Put ("ERRONEOUS COMMAND");
Skip-Line (input-File);
Newine;

end; - Exception block for incorrect commands
end loop; - while not EndOf_File

end Flights;

The bold-faced text in figure I11 indicates new code which was inserted for delivery three. Figure
12 contains List Passengers.ada.

75

FIGURE 12. ListPassengers.ada

separate (Flights)
procedure ListPassengers (AQueue: in Queue-Type) is

This procedure prints the names of the passengers in the queue.

-- INPUT: A-Queue Queue containing list of passengers.
-- OUTPUT:
-- Each passengers name will be printed on the terminal.

Passenger-Name: Name-Type;
PassengerQueue: QueueType;

begin -- List
PassengerName:= BlankName;
Passenger-Queue:= A.Queue;
NewLine; NewLine;
Put ("Passenger List");
NewLine; New-Line;
DequeuejLoop: loop - Empty the passenger list.

begin -- Exception block for empty queue
Dequeue (Passenger-Name, Passenger-Queue);
Put (PassengerName);
New-Line;

exception
when EmptyQueueEror =>

exit DequeueLoop;
end; - Exception block for empty queue

end loop DequeuejLoop;
end ListPassengers;

Nothing is Perfect

Ada

The greatest difficulty students encounter when using Ada is determining the proper compilation
order of the modules. The primary order of confusion is that the rules for subprogram and subunits
do not seem (to students, at least) to be consistent. Subprograms must be compiled before the main
program unit and subunits are compiled afterwards. When packages are employed the additional
complexity of separate specifications and bodies confuse students even more. Drawing dependen-
cy diagrams alleviates this confusion somewhat, but nothing short of experience seems to be a good
solution. Fortunately, students are not confronted with the more complexly organized programs
until after they have become more mature.

Other problems with Ada stem from the richness of the language. Ada offers far too many options
for certain constructs. The idea of providing named, as well as, positional parameters for subpro-
gram parameters is excellent; but the "mix and match" options are not. This sort of "feature" tends

76

to make Ada a very difficult language to teach lower level/entry students. An instructor must very
carefully introduce and discuss these options. I feel these options (and others) must be discussed if
only to warn students of the potential problems they pose. Teaching a subset of Ada should not be
considered. Too often students will accidentally and erroneously incorporate an untaught construct
into their program and expend many hours attempting to isolate and correct a problem.

Incremental Program Development

There are two major problems with the use of IPD.

Instructors must realize that IPD will increase their workload. Program specifications and delivery
requirements must be well thought out.Examining and grading the intermediate deliveries is a time
consuming, but necessary, process. This method will not work unless the instructor is willing to
expend the requisite extra effort.

If used too long, IPD can actually stymie student initiative and innovation. Students can become
so reliant on the "prefabricated" delivery requirements that they their ability to design and imple-
ment a project unassisted can be seriously degraded. Present research indicates that this method is
most beneficial starting with the third (of six programs) program assignment of CS 1 and should
continue though program assignment four or five (of five to six programs) of CS 2. Assignments
earlier than the third in CS 1 are usually too small to warrant the use of this method and at some
point students must demonstrate the capability to "build" a complete program without assistance.
Research is continuing in this area. IPD can and should be used somewhat in CS 5 and 7. In these
courses it should not be used for all of the programs and the delivery requirements should be less
detailed.

Synergy
The IPD paradigm is an extremely valuable tool and can be effectively used in combination with
any language. Our department uses Pascal as its main language and I have used IPD successfully
for a number of years.

Ada is an excellent language for software development. While it is not our main language, we have
been offering at least one Ada course per semester for the past five years and use it extensively in
our Programming Languages, Advanced Operating Systems, and Software Engineering courses.
Our experience with Ada has led us to seriously consider incorporating it as the main language for
the curriculum.

While IPD and Ada are each effective teaching tools, in their own right, the combination of the two
creates an extremely powerful and potent instrument for the instruction of lower level Computer
Science students. The effect is synergetic, where the requirements of IPD (modularity, elegant tran-
sition from design to code, and incremental delivery) are amply met by the features of Ada, result-
ing in a mechanism which practically illustrates and consistently reinforces the power of top-
down design and step-wise refinement.

77

Student Reaction
At first student reaction is almost universally strongly against this methodology. After the second
program (using incremental program development) most students grudgedly accept it, and some-
where during the third program the "light bulb" switches on. It is at this stage that the difficulty of
the problem is such that solving it is significantly beyond their intellectual capacity without the use
of proper software development techniques. Programs at this stage begin to incorporate many dis-
parate entities which have to be properly assembled in order to obtain a working program. It is in
the assembly of these entities that students have problems and once they realize that incremental
program development provides them with many of the tools to make their job easier, they accept
it and use it.

The brightest students are usually the ones who most resist using this methodology. I believe that
these students are not seriously challenged (by programs) until much later in their course work. It
is still important for them to go through the process, because when they are faced with a problem
which they can not solve "naturally" (and this is inevitable) they will have the tools to assist them.

Summary
Incremental program development is an important method when used to teach and illustrate impor-
tant techniques in program developmentIt is especially effective when used in conjunction with
the Ada programming language. Students acquire an appreciation and understanding of the power
these techniques offer when they see how much easier it is to complete assignments. Preliminary
indications are that it is most valuable when used in CS 1 and 2.

This methodology should be used with care, however. An instructor must specify intermediate re-
sults so as to reinforce class room discussion of proper program development procedures. The in-
structor must also be aware of when to discontinue its use. If used too long or incorrectly this
technique could well become detrimental to student development

78

References
Booch, G., Software Components with Ada, Benjamin/Cummings, 1987.

Hoare, C. A. R., Hints On Programming Language Design, Sigact/SigPlan Symposium of Princi-

ples of Programming Languages, Octover 1973

Pratt, T. W., Programming Languages: Design and Implementation, 2d. ed., Prentice-Hall, 1984.

Pressman, R. S., Software Engineering: A Practitioner's Approach, 2d.ed., McGraw-Hill, 1987.

Schneider, M. G. and Bruell, B. C., Advanced Programming and Problem Solving with Pascal, 2d.
ed., John Wiley, 1987.

Sebesta, R. W., Concepts of Programming Languages, Benjamin/Cummings, 1989.

Wirth, N., On the Design of Programming Languages, Proceedings IFIP CONGRESS 74, 386-
393, North-Holland Publishing Company.

79

This Page Left Blank Intentionally

80

USING SHORT LABORATORY EXERCISES TO DEVELOP
Ada AWARENESS

Patricia K. Lawlis Martin R. Stytz
Dept. of Electrical and Computer Engineering Dept. of Electrical and Computer Engineering

Air Force Institute of Technology Air Force Institute of Technology
Wright-Patterson AFB, OH 45433 Wright-Patterson AFB, OH 45433

I. INTRODUCTION.

Students can learn the Ada programming language in many ways, with the
approach heavily influencing the student's perspective on the language. The use of
traditional, syntax-directed, bottom-up teaching methodologies develops students into
traditional programmers. They learn programming-in-the-small, and Ada is perceived as
just another language, albeit with some unique constructs that support object-oriented
programming. On the other hand, a top-down approach to teaching Ada introduces
students to the language as a software engineering tool. In this new approach, students
begin with an introduction to the significant Ada constructs and their relationship to the
goals of object-oriented programming. Instead of being taught Ada syntax, it is assimilated
through repeated exposure to the language within a controlled laboratory learning
environment. Rather than doing simple "Hello world!" programs from scratch, the
students are introduced to Ada-based software engineering through exposure to software
engineering concepts in class and implementations of the same concepts in lab. To succeed
in this top-down teaching style, students must build on given code so that they can avoid
the learning barriers encountered when programming-in-the-small and building systems
from scratch.

This paper describes five short, independent laboratory exercises emphasizing
features of Ada which support software engineering concepts. The exercises are used in a
software design course that requires students to use Ada for system prototyping and
design. The students in the course have a wide range of prior programming experience,
but most have little prior exposure to Ada. Each exercise emphasizes a single Ada feature
and the support of the feature for a general principle of software engineering. Hence, some
or all of the labs could be used in courses other than one that deals strictly with software
design.

Section 2 of this paper discusses the philosophy behind the development and use of
these exercises. Section 3 discusses the exercises in detail, and Section 4 summarizes the
results of using them. The appendix contains the exercises along with the required Ada
code.

II. PHILOSOPHY BEHIND THE EXERCISES.

These five exercises exploit two important aspects of learning. People learn by
doing and they learn by example. Programming exercises always provide an opportunity
for students to learn by doing. However, the initial exposure to the language can be a very
frustrating experience unless it is appropriately controlled. We control the learning
environment by providing Ada source code that the students use to complete the labs. The
use of given code achieves two important objectives. First, the labs provide an example of
good Ada coding style, which the students are encouraged to adopt for their own use.
Second, given code reduces the amount of infor,,iation the students must assimilate to
implement a running program, which decreases student frustration in learning the language.

Three of these exercises provide students with an opportunity to learn by doing
while the given code provides an example of Ada syntax. In these exercises, the students

81

begin the lab with working program modules, and the lab requires them to modify the
modules to meet new design specifications. Hence, they have working examples to use as
a basis for future work, and the exercise provides insights into the effects of specific Ada
language constructs. In addition, the step-by-step directions for performing the lab
eliminates confusion concerning lab goals and expected student performance.

The other two exercises provide students with an opportunity to investigate the
issues involved in going from a software design to an Ada implementation of the design.
In these exercises, the students start with either Booch diagrams or structure charts and
must develop the relevant package specifications and stubbed modules.

III. THE EXERCISES.

1. Fundamentals

This lab introduces the Ada package as the basic language construct. It also
exposes students to the basic Ada syntax. The lab employs the Verdix Ada Development
System (VADS) on Unix, but that could easily be modified to accommodate a different Ada
platform. Note that the specification and the body of the Fractions package are put in
separate files to introduce students to this standard way of organizing a package. Also note
that the Test_Fractions procedure is not very sophisticated, but the exercise provides a
relatively simple example of Ada syntax which the students can grasp quickly.

2. Object-oriented design

This lab introduces the student to the software engineering process of mapping a
design from a Booch diagram to Ada package specifications. Any simple Booch diagram
can be used, but it should probably contain only two packages, each of which contain no
more than six operations in the specification. Although the lack of an accompanying
written specification of the packages frustrates the students, we feel omitting the
specification forces the students to concentrate on the purpose of the lab. We have found
that as soon as students see a written specification they begin to develop a complete design
and working program. These efforts do not support the intent of the lab. By providing
only a graphic design, students are forced to concentrate on translating the diagram into
package specifications and developing their understanding of this important process.

3. Functional design

This lab introduces the student to the software engineering process of mapping a
design from a Structure Chart to nested Ada procedures and functions. The separate
clause, and its effect upon compilation order, is introduced in this context. We provide a
structure chart that addresses the same design problem addressed in the object-oriented
design lab. A diagram is provided instead of a complete specification for the same reason
that only a Booch diagram is furnished in the object-oriented design lab. However, we do
provide the students with an example of the use of the separate zlause.

4. Package interfaces

This lab highlights the differing effects of the regular type, private type, and limited
private type declaration when encapsulating an abstract data type (ADT) in an Ada package.
This lab is an involved exercise, requiring the students to follow the lab directions very
carefully. The lab has been simplified as much as possible, with most student actions
consisting of changing statements to and from Ada comments. Note that in this lab we
have put both the specification and the body of package Fractions in one file, illustrating

82

another option for package organization and simplifying the compilation process required

by the exercise.

5. Exception handling

This lab allows students to explore the Ada exception handling and propagation
mechanisms. In the process, it also helps to clarify issues of scope. This lab is a
somewhat contrived example of exception propagation, but its deliberate simplicity makes
the code and exception propagation easy to understand

IV. RESULTS.

These exercises have already been modified based on feedback from students who
have done them,and they can undoubtedly be further improved. They could also be
tailored to different situations and different courses.

We have noted two important results from their use. First, students almost always
complete them, so the exercises are neither threatening nor an area of potential failure.
Second, students who have completed the labs almost unanimously agree that they learned
a lot about Ada from them. Their demonstrated ability to use Ada and software engineering
design techniques on a larger course project supports this conclusion.

V. APPENDIX.

Style conventions used in the Ada code for laboratory exercises 1, 4, and 5:
Reserved words are in boldface.
Package names are in italics.
User-defined identifiers have the first letter Capitalized.
Standard Ada package names are in ALL-CAPITALS.

83

LABORATORY 1

FUNDAMENTALS OF UNIX AND ADA

Objectives:

1. To become familiar with Unix.
2. To become famili,- %-th the Verdix Ada Development System (VADS).
3. To learn fundamental Ada syntax by reading and modifying code.

Procedure:

1. Have pencil and paper at hand, and take notes as you work through this lab. Note the
commands you use as well as any noteworthy results or insights. You need not recopy
the test input or output data into your notes, but you should note whether or not the
output was correct for each test case.

2. Login. Create a directory called lab for the lab work of this course, using the
following command:

mkdir lab

Then protect the directory by issuing the following command:

chmod 700 lab

Check the directory permissions by typing:

is -I

What permissions are now associated with the directory lab?

3. Make lab your current directory with the command:

cdlab

Now create a VADS directory (program library directory) for this lab exercise using the
following command:

a.mdib labl

4. Copy both the specification and the body of the Fractions package as well as the test
program Test Fractions into your lab 1 directory using the following commands.
Don't forget the dots (.).

cd labl
cp <course directoqy>/LAB/Fractions.a
cp <course direcutry>/lAB/FractionsBody.a.
cp <course directory>/LABfTesLFractions.a

5. Compile the specification of the Fractions package using the command:

ada Fractions.a

Compile the body of Fractions with:

84

ada FractionsBody.a

6. Compile the TestFractions program using the following command:

ada -M TestFractions.a

and run the program using the following command:

a.out

and the following test data:

x

N=6, D=8 N=3, D=4
N=3, D=1 N=-7,D=-7
N=, D=4 N=1, D=150
N =15000, D=1 N=1, D= 15000
N=4, D=O N=5, D=1
N=1.0, D=5 N=5, D=1
N=yes, D=5 N=5, D=1

7. In package Fractions, where type Fraction is declared as a private type (in the
specification file, Fractions.a), change the type of the variable Numerator from
integer to float (and its initial value from 0 to 0.0). This change necessitates
modifications to the package body. Note that these changes do not propagate to the
package specifications.

Make the necessary changes to the package body as follows:

In function Top, the line

retan X.Numerator

must be changed to read

return integer (X.Numerator);

In the definition of the function called MakeFraction, the line

then return (Top, Bottom);

must be changed to read:

then return (float (Top). Bottom);

and the following line must be changed to read:

else return (float (-Top), -Bottom);

8. Recompile both the specification and body of package Fractions. Note that the
specification must be recompiled only because something is changed in its private part,
and n= because any of the interfaces to the package have changed.

85

9. Recompile and run Test Fractions on the test data. Note that the user interface with
the program hasn't changed -- integers are still entered for the fraction numerators. The
changes are implementation changes only, invisible to the package user.

10.Submit a listing of your updated Fractions package, together with your notes on what
occurred as you progressed through this lab and your interpretation thereof.

-- PACKAGE FRACTIONS

SPECIFICATION

-- THIS PACKAGE CONTAINS THE DEFINITION FOR AN ABSTRACT FRACTION TYPE. THIS
-- INCLUDES ARITHMETIC AND RELATIONAL OPERATIONS FOR A FRACTION. IT ALSO
.- INCLUDES THE CAPABILITY TO CREATE AND REDUCE A FRACTION AS WELL AS TO GET

AND PUT ONE INTERACTIVELY.

package Fractions is
type Fraction is private;

function Makeraction (Top, Bottom : in integer) return Fraction;
function Reduce (X in Fraction) return Fraction;
function Equal (Left, Right: in Fraction) return booles.;
function "<" (Left, Right: in Fraction) return boolean;
function "<=" (Left, Right: in Fraction) return boolean;
function ">" (Left, Right: in Fraction) return boolean;
function ">=" (Left, Right: in Fraction) return boolean;
function "+" (Left, Right : in Fraction) return Fraction:
function "-" (Left, Right: in Fraction) return Fraction;
function "*" (Left, Right: in Fraction) return Fraction;
function "7. (Left, Right: in Fraction) return Fraction;

procedure Get (X : out Fraction);
procedure Put (X: in Fraction);

private
type Fraction is

record
Numerator : integer := 0;
Denominator: positive := 1;

end record;
end Fractions;,

86

PACKAGE FRACTIONS

BODY
..

-- THIS PACKAGE CONTAINS THE DEFINITION FOR AN ABSTRACT FRACTION TYPE. TIS
-- INCLUDES ARITHMETIC AND RELATIONAL OPERATIONS FOR A FRACTION. IT ALSO

INCLUDES THE CAPABILITY TO CREATE AND REDUCE A FRACTION AS WELL AS TO GET
__ AND PUT ONE INTERACTIVELY.

with TEXT _0;
package body Fractions is

package nt_10 is new TEXTIO.INTEGERO (integer);

FUNCTION TOP

-* THIS FUNCTION RETURNS THE VALUE OF THE NUMERATOR OF THE GIVEN FRACTION.

function Top (X : in Fraction) return integer is
begin

return X.Numerator,
end Top;

FUNCTION BOTT'OM

-- THIS FUNCTION RETURNS THE VALUE OF THE DENOMINATOR OF THE GIVEN FRACTION.

function Bottom (X : in Fraction) return positive is
begin

return X.Denominator,
end Bottom;

-- FUNCTION MAKE-FRACTION

-- THIS FUNCTION RETURNS A FRACTION COMPOSED OF THE GIVEN NUMERATOR AND
DENOMINATOR.

function Make-Fraction (Top, Bottom : in integer) return Fraction is
begin

if Bottom > 0 then return (Top, Bottom);
else return (-Top, -Bottom);
end if;

end MakeFraction;

FUNCTION REDUCE

-- THIS FUNCTION RETURNS THE REDUCED FORM OF THE GIVEN FRACTION.

function Reduce (X : in Fraction) return Fraction is

87

The_GCD,
NewTop,
NewBottom: integer;

.....-- INERNAL FUNCTION GCD

-- THIS FUNCTION RETURNS THE GREATEST COMMON DIVISOR OF THE GIVEN NUMBERS

function GCD (First , Second : in integer) return integer is
begin

if (First = 0 or Second = 0) then return 1;
elsif First < Second then return GCD (Second , First);
elsif (Second <= First) and (First mod Second = 0) then return Second;
else return GCD (Second , First mod Second);

end if;
end GCD;

begin -- body of function Reduce
TheGCD := GCD (abs Top (X) , abs Bottom (X));
NewTop :- Top (X) / The_ GCD;
NewBottom := Bottom (X) / The GCD;
return MakeFraction (New-Top, NewBottom);

Lnd Reduce;

FUNCTION "="

-- THIS FUNCTION RETURNS TRUE IF THE GIVEN FRACTIONS ARE EQUIVALENT, AND FALSE --

OTHERWISE.

function Equal (Left, Right: in Fraction) return boolean is
begin

return (Top (Left) * Bottom (Right) = Top (Right) * Bottom (Left));
end Equal;

FUNCTION "<"

-- THIS FUNCTION RETURNS TRUE IF THE LEFT FRACTION IS LESS THAN THE RIGHT
-- FRACTION, AND FALSE OTHERWISE.
..

function "<" (Left , Right : in Fraction) return boolean is
begin

return (Top (Left) * Bottom (Right) < Top (Right) * Bottom (Left));
end "<";

FUNCTION "<="

-- THIS FUNCTION RETURNS TRUE IF THE LEFT FRACTION IS LESS THAN OR EQUAL TO THE --

-- RIGHT FRACTION, AND FALSE OTHERWISE

function "<=" (Left , Right: in Fraction) return boolean is
begin

return (Top (Left) * Bottom (Right) <= Top (Right) * Bottom (Left));
end "<="

88

FUNCTION ">"

THIS FUNCTION RETURNS TRUE IF THE LEFT FRACTION IS GREATER THAN THE RIGHT
FRACTION, AND FALSE OTHERWISE.

function ">" (Left , Right: in Fraction) return boolean is
begin

return (Top (Left) * Bottom (Right) > Top (Right) * Bottom (Left));
end ">' ,

FUNCTION ">="

-- THIS FUNCTION RETURNS TRUE IF LEFT FRACTION IS GREATER THAN OR EQUAL TO THE --

RIGHT FRACTION, AND FALSE OTHERWISE

function ">=" (Left , Right: in Fraction) retrn boolean is
begin

return (Top (Left) * Bottom (Right) >= Top (Right) * Bottom (Left));
end ">=";

FUNCTION "+"

THIS FUNCTION RETURNS THE SUM OF THE GIVEN FRACTIONS.

function "+" (Left, Right: in Fraction) return Fraction is
New-Top , NewBottom : integer,
Result : Fraction;

begin
NewTop := (Top (Left) * Bottom (Right)) + (Top (Right) * Bottom (Left));
NewBottom := Bottom (Left) * Bottom (Right);
Result := Reduce (Make_Fraction (New-Top, New_Bottom));
return Result;

end "+";

FUNCTION "-"

THIS FUNCTION RETURNS THE DIFFERENCE OF THE GIVEN FRACTIONS.

function "-" (Left, Right : in Fraction) return Fraction is
NewTop , NewBottom : integer,
Result : Fraction;

begin
NewTop := (Top (Left) * Bottom (Right)) - (Top (Right) * Bottom (Left));
NewBottom := Bottom (Left) * Bottom (Right);
Result := Reduce (MakeFraction (NewTop, NewBottom));
return Result;

end v.

89

FUNCTION ""

THIS FUNCTION RETURNS THE PRODUCT GF THE GIVEN FRACTIONS.

function "*" (Left, Right: in Fraction) return Fraction is
NewTop , New-Bouom : integer,
Result : Fraction;

begin
New_Top := Top (Left) * Top (Right);
NewBottom := Bottom (Left) * Bottom (Right);
Result := Reduce (Make-Fraction (New_Top, NewBottom));
return Result;

end "*";

FUNCTION "/-

THIS FUNCTION RETURNS THE QUOTIENT OF THE GIVEN FRACTIONS.

function "f" (Left, Right: in Fraction) return Fraction is
NewTop , NewBottom : integer,
Result : Fraction;

begin
NewTop := Top (Left) * Bottom (Right);
New_Bottom := Bottom (Left) * Top (Right);
Result:= Reduce (MakeFraction (NewTop, NewBottom));
return Result;

end "/ ";

PROCEDURE GET

-- THIS PROCEDURE GETS A FRACTION AS INPUT FROM THE KEYBOARD AND THEN RETURNS --

-T TO THE CALLING PROCEDURE.

procedure Get (X : out Fraction) is
Top, Bottom : integer,

begin
Jnt_.IO.Get (Top);
Int_IO.Get (Bottom);
X := Make_Fraction (Top , Bottom);

end Get;

PROCEDURE PUT

THIS PROCEDURE PUTS THE GIVEN FRACTION TO THE SCREEN

procedure Put (X : in Fraction) is
begin

int 10.Put (Top (X));
TEXT _O.PUT (");
Int_10 Put (Bottom (X));

90

end Put;

end Fractions;

TESTPROGRAM

TEST FRACTIONS "

THIS PROGRAM TESTS THE CAPABl.r/IES OF PACKAGE FRACTIONS

with TEXT _0, Fractions;
use TEXTTO, Fractions --Use clause necessary for exceptions and infix operations

procedure Test_Fractions is
X , Y: Fraction;
Continue: character :='n'; -- indicates whether to continue or to quit

begin
loop --Processes any number of fractions

begin - block required for exception handlers

-- Get the fractions (not a sophisticated way of doing this)

TEXT IO.NEWLINE;
TEXTIO.PUT LINE ("Please enter a fraction X");
TEXTIO.PUTLINE ("Enter the fraction as ""N D""");
TEXTIO.PUTFLINE (" where N is the numerator and D is the denominator");
Fracdons.Get (X);
TEXT IO.NEWLINE;
TEXT_IO.PUT LINE ("Please enter a second fraction Y in the same manner");
Fractions.Get (Y);
TEXT IO.NEWLINE;
TEXT_1O.PUT ("X = ");
Fractions.Put (X);
TEXT IO.PUT ("
TEXTiO.PUT ("Y =");
Fractions.Put (Y);
TEXTIO.NEW_LINE;

-- Reduce one fraction

TEXT iO.PUT ("X in lowest terms is");
Fractzons.Put (Reduce (X));
TEXTIO.NEWLINE;

-- Test the relational operations

if X = Y then TEXT O.PUT ("X = Y");
else TEXT 1O.PUT ("X not = Y"

end if;

91

TEXT IO.NEWLINE;
if X <-Y then TEXT IO.PUT ("X < Y"

else TEXT IO.P-UT ("X not < Y"
end if;
TEXTJO.NEW LINE;
if X >= Y then TEXT JO.PUT ("X >= Y");

else TEXT JO.PUT ("X not >= Y");
end if;
TEXTJO.NEWLINE;
if X <= Y then TEXT IO.PUT ("X <= Y");

else TEXT JO.PUT ("X not <= Y"
end if;
TEXT_IO.NEWLINE;
if X > Y then TEXT lO.PUT ("X > Y");

else TEXTJO.P-UT ("X not > Y");
end if;
TEXTIO.NEW LINE;

-- Test the arithmetic operations

TEXT 1O.PUT ("X + Y =");

Fractions.Put (X + Y);
TEXTIJONEW-LINE;
TEXT-O.PUT ("X - Y -");
Fractions.Put (X -Y);
TEXTIO.NEWLINE;
TEXT IO.PUT ("X * Y
Fractions.Put (X * Y);
TEXT IO.NEW LINE;
TEXT IO.PUT ("X / Y=");
Fractuons.Put (X / Y);
TEXTJO.NEW LINE;
TEXT IO.PUT ("(X + Y) * (X - Y) =");
Fractions.Put ((X + Y) * (X- Y));
TEXT IONEW-LINE; TEXTIO.NEWLINE;
TEXT-IO.PUT ("Do you wish to continue? (Y or N)");
TEXT-IO.GET (Continue);
if Continue = 'n' or Continue = 'N' then exit;
end if;

exception
when DATA_ERROR =>

TEXTIO.PUTLINE ("Invalid input, please try again: ");

TEXTO.SKIPLINE; -. required to clear buffer
end; - End exception handler block

end loop;

TEXTIO.PUTLLINE ("Test over");

exception
when others => TEXT IO.PUTLINE ("Unknown error occurred");
raise; -- Allows system message to indicate the name of raised exception

end TestFractions;

92

LABORATORY 2

OBJECT ORIENTED DESIGN

Objectives:

1. To gain experience with the object-oriented design (OOD) process.
2. To practice developing Ada specifications from Booch diagrams.

Procedure:

1. Have pencil and paper at hand, and take notes as you work through this lab. Be sure to
indicate any noteworthy results or insights.

2. Develop Ada package specifications (only the specs, and only for the two packages --
not for the "Driver") for the cruise control problem, using the attached Booch graph as
the basis for developing these specs. Include what you think would be appropriate
calling parameters for the procedures and functions (make them up, but be sure to use
some parameters -- some in, some out, and some both -- on at least half of the
procedures and functions). Be sure to comment appropriately.

3. Compile the specs you develop. Be sure they compile without error. (Do not attempt
to execute the code -- specs cannot be executed.)

LABORATORY 3
FUNCTIONAL DESIGN LAB

Objectives:

1. To gain experience with the functional design process.
2. To practice developing Ada specifications from structure charts.

Procedure:

1. Have pencil and paper at hand, and take notes as you work through this lab. Be sure to
indicate any noteworthy results or insights.

2. Develop stubbed Ada code for the cruise control problem, using the attached structure
chart as the basis for developing this code. In the top level procedure, specify each
lower level procedure or function with a separate clause. Then create these separate
procedures and/or functions in separate files. Include calling parameters for procedures
and functions as in the previous lab. Also, include calls to the lower level procedures
and functions in the top level procedure, and include at least one output statement in
each lower level procedure. Be sure to comment appropriately.

3. Compile the code you develop. Each file may be compiled separately to check syntax.
When it comes time to put them all together, you can create an executable file using the
command:

ada -M CruiseConrolSystem [filenamel] [filename2] ... [filenameNl

where the file for the main procedure is filename I and each separate file you have
created is listed as one of the other filenames. Execute your program shell.

93

LABORATORY 4

PACKAGE INTERFACES LAB

Objectives:

1. To learn the differences in the use of an Ada package which depend on the declaration
of the object type as a regular type, a private type, or a limited private type.

Procedure:

1. Have pencil and paper at hand, and take notes as you work through this lab. Be sure
your notes describe the results of each step of this procedure, as well as your
understanding of what is happening.

2. Copy the Fractions package and test program into your VADS directory using
appropriate commands. The files are located in the directory

<course directory>

and the file names are Fractions.a and TestPrivate.a

3. Compile both files. If any lines of Test Private won't compile, comment them out
by inserting 2 dashes at the beginning of Zach such line. Create an executable file called
RegularType.

4. Run Regular-Type.

5. Change the declaration of type Fraction to a private type. Take out all dashes that
you added to both files in step 3, if any (but be sure to leave in any that were there in
the first place). Compile both files again. Again, comment out any lines which won't
compile in the same manner as before. Create an executable file called PrivateType.

.6. Run PrivateType.

7. Change the declaration of type Fraction to a limited private type. Take out all
dashes that you added to both files in step 5, if any. Compile both files again, and
again if any lines in Test Private won't compile, comment them out as before, but
don't make an executable file yet.

8. Remove the dashes from in front of the two new Make Fraction calls in
Test Private. Also, comment out the specification for function MakeFraction in
package Fractions. Then take out the dashes in front of the specification for
procedure Make Fraction. Create a procedure Make Fraction in the body of
package Fractions so it will work using the parameters given in the specification.
Compile both files again, and create an executable file called umitedPrivateType.

9. Run Limitedva,-_Type and observe what happens.

94

PACKAGE FRACTIONS

SPECIFICATION
..

THIS PACKAGE CONTAINS THE DEFINITION FOR AN ABSTRACT FRACTION TYPE. THIS
INCLUDES ARITHMETIC AND RELATIONAL OPERATIONS FOR A FRACTION. IT ALSO

INCLUDES THE CAPABILITY TO CREATE AND REDUCE A FRACTION AS WELL AS TO GET
AND PUT ONE INTERACTIVELY.

package Fractions is
type Fraction is

record
Numerator : integer := 0:
Denominator: positive := 1;

end record;

procedure MakeFraction (Top, Bottom : in integer;
Result : out Fraction);

function Make-Fraction (Top, Bottom : in integer) return Fraction;
function Reduce (X : in Fraction) return Fraction;

function Equal (Left, Right: in Fraction) return boolean;
function "<" (Left, Right: in Fraction) return boolean;
function "=" (Left, Right: in Fraction) return boolean;
function ">" (Left, Right: in Fraction) return boolean;
function >= (Left, Right: in Fraction) return boolean;
function "+" (Left, Right: in Fraction) return Fraction;
function "-". (Left, Right: in Fraction) return Fraction;
function "*" (Left, Right: in Fraction) return Fraction;
iunctio . (Let, Right: in Fracion) return Fraction,

procedure Get (X : out Fraction);
procedure Put (X : in Fraction);

end Fractions;

PACKAGE FRACTIONS

BODY

-- CODE FOR FRACTIONS PACKAGE BODY IS THE SAME AS THAT FOR THE FUNDAMENTALS LAB
..95..

95

PROCEDURE

TEST PRIVATE

-- A PROGRAM FOR TESTING THE TYPE FRACTION WHEN DECLARED AS A REGULAR, A
-- PRIVATE, AND A LIMITED PRIVATE TYPE.

with TEXT J0;
with Fractions;

procedure TestPrivate is
FractionOne,
FractionTwo,
Fraction-Three: Fractions.Fraction;

begin
FractionOne.Numerator := 3;
Fraction One.Denominator := 4;
TEXTlO.PUT ("Created new fraction ");
Fractions.Put (FractionOne);
TEXT IO.PUT_LINE (" ");
TEXT IO.PUTLINE ("Used the fraction representation directly");

Fraction Two := Fractions.Make_Fraction (Top => 2, Bottom => 8);
FractionThree := Fracons.MakeFraction (Bottom => 4, Top => I);

- Fractions.MakeFraction (Top => 2, Bottom => 8, Result => Fraction-Two);
- Fractions.MakeFraction (Result => FractionThree, Top => 1, Bottom => 4);

if FractionTwo = FractionThree
then TEXT IO.PUT_LINE ("The fractions tested equal");

else TEXT bO.PULTLINB ("The fractions tested unequal");
end if;

exreption
when others => TEXT_IO.PUT_LINE ("Something went wrong");
raise;

end TestPrivate;

96

LABORATORY 5

EXCEPTION HANDLING LAB

Objectives:

1. To provide hands on experience in handling Ada exceptions.
2. To demonstrate exception propagation.
3. To gain additional insight into scoping concepts.

Procedure:

1. Have pencil and paper at hand, and take notes as you work through this lab. Be sure to
indicate any noteworthy results or insights.

2. Copy the files to be used for this exercise into your VADS directory using appropriate
commands. The files are located in the directory

<cotuse directory>

and the file names are Propagaw.a and Resources.a

3. Compile each file by typing the following commands:

ada Resources.a
ada -M Propagate.a

4. Execute the program, and note the order of the messages which print out, especially
that the exception propagation messages occur in the reverse order of the procedure
calls.

5. Change the when others to when Crazy in procedure Not in Package, and try
to recompile Prtopagae.L Leave the last change in place, and then move the declaration of
Crazy to the specification of package Container and try compiling Propagate.a again.
Why doesn't this work? Now move the declaration of Crazy to procedure Propagate
and try compiling Propagae.a again. This time run the program. Now Crazy is visible
to Notin_Package, and the program runs as before.

6. To procedure RaisesException, add an exception handler for Crazy which
produces a meaningful message and also contains a raise statement to re-raise the
exception. Then recompile Resourcs.a (only necessary if you changed it), recompile
Propagate.a, and run the program again. This illustrates that the exception began its
propagation from Raises_Exception.

97

PROCEDURE

PROPAGATE

-- THIS PROCEDURE DEMONSTRATES THE PATH OF EXCEPTION PROPAGATION,

with Resources;

procedure Propagate is

-- THIS IS THE SPECIFICATION OF" TI E PACKAGE WHICH BOTH RAISES THE EXCEPTION
-- INITIALLY AND HAS THE EXCEPTION HANDLER

package Container is
procedure HasHandler;
procedure RaisesException;

end Conta .ner

- Tis PROCEDURE IS NOT A PART OF PACKAGE CONTAINER, BUT CONTAINER IS VISIBLE
- TX) IT, SO IT CALLS ONE OF CONTAINER'S PROCEDURES. IT CANNOT HANDLE

-- CONTAINER'S EXCEPTION BY NAME, BUT IT CAN HANDLE IT WITH AN OTHERS CLAUSE,
AND IT CAN PROPAGATE IT.

procedure Notin_Package is
begin

Resources.Not -in - ackageMessage;
Container.Raises Exception;
exception

when others => Resowces.AnonymousException_.Message;
raise;

end Notjn.Package;

- TIS IS THE BODY OF THE PACKAGE SPECIFIED ABOVE

package body Container is
Crazy: exception;

-This procedure handles the exception

procedure Has_Handler is
begin

Resourres.I4asHandlerMessage;
Noc-inPakage;
exception

when Crazy => Resources.TeIIEveryone;
end HasHandier

-- THIS PROCEDURE INITIALLY RAISES THE EXCEPTION

procedure Raises-Exception is
begin

Resources.Raises_Exception-Message;
raise Crazy;

end RaisesException;
end Container,

-- THIS IS THE BODY OF THE MAIN PROPAGATE PROCEDURE

begin
Resources.Propagatevlessage;
Container.Hlasandlcr,

end Propagate;

99

PACKAGE

RESOURCES
--

-- THIS PACKAGE CONTAINS ALL OF THE TEXT MESSAGES REQUIRED BY THE EXCEPTIONS
EXAMPLE PROCEDURE PROPAGATE.

--------- --

package Resources is
procedure TellEveryone;
procedure Not_in-PackageMessage;
procedure Anonymous-Exception-Message;
procedure Has_-Handler_-Message;
procedure Propagate-Message'.

end Resources;

with TEXTJO;

package body Resources is

procedure Tell-Everyone is
begin

TEXTIO.PUTLLINE ("Crazy is handled by HasHandler");
end Tell-Everyone;

procedure Not-inPackage..Message is
begin

TEXTJO.PUTLINE ("Control goes to Not_inPackage");
end Not_in_ PackageMessage;

procedure Anonymous-Exception-.Message is
begin

TEXTJO1.PUL LINE ("Exception is handled and reraised in Not_in_Package");
end Anonymous~xception-Message;

procedure HasHandler-Message is
begin

TEXTJ.PULLINE ("Control goes to I las_Handler");
end HlasHandlerMessage;

procedure Raises_-Exception..Message is
begin

TEXTIO.PUL LINE ("Control goes to Raises _Exception, exception is raised");
end Raises-Exception-.Message;

procedure Propagate..Message is
begin

TEXTJO1.PUTLlINB ("Control starts at main procedure Propagate");
end Propagate-.message;

end Resources;

100

Panel Session

Lessons Learned in Teaching Software Engineering with Ada

Charles Engle, Chair

This panel will discuss the lessons learned, summarized as advantages and
disadvantages, from trying to introduce students to the concepts of software engineering
using Ada as the language of implementation. All of the panel members have had
"platform experience" and will relate the good, the bad, and the ugly side of this topic.
For instance, how does the instructor give the student an understanding of the concept
of abstract data types? In Ada the answer is usually a combination of the rich variety of
data types and the concept of packages. But how does the instructor get over the hurdle
of 1/O in Ada and still require the student to define new types (no predefined numeric
types allowed!)? And how does the instructor show the student how to avoid the "use"
clause, yet still get infix visibility for overloaded operators? How does the concept of
information hiding get across to the student when private types must be fully declared in
the package specification (although in a private part)? What about Design aspects or
requirements analysis, or specifications and PDL? What types of programming
assignments in Ada have proven to be educational for the student, pedagogically
satisfying for the instructor, yet still entertaining (Yes, entertaining!)? These and other
questions will be answered by this panel as well as any questions from the audience.

101

This Page Left Blank Intentionally

102

Hard-Deadline, Soft-Deadline and
No-Deadline Real-Time Programming:

Telling the Truth when Teaching Tasking

Capt. David A. Cook
Dept. Of Computer Science

U.S. Air Force Academy, CO. 80840

Modern-day applications often have both real-time and parallel
requirements. Just because Ada has tasking, it is sometimes
erroneously assumed that Ada provides support for both real-time
and parallel applications. This is not necessarily so. Ada does
provide the minimal support necessary to allow experienced
developers to design their own particular solutions to both of these
types of problems, but the solutions are not inherently part of Ada
itself. This article discusses the differences between the three
various types of real-time applications. and-also covers the various
problems and solutions available, both within and external to Ada
itself. Additionally, it covers why using Ada tasks as a "normal"
programming practice can actually increase system response time.
Explanations for various anomalies that tasking can produce are also
mentioned. Finally, suggestions for proper use of tasking and
situations where tasking is inappropriate are discussed.

Key terms and phrases: concurrent processing, deadlines, design,
distributed processing, fault masking and fault-tolerance, parallel
processing, real-time applications, recovery, rollbacks, tasking.

1. INTRODUCTION

Professional real-time software programmers often become irate
when Ada programmers loudly profess that -Ada handles real-time
programming because it has tasking". The truth of the matter is that
educators often fail to adequately cover the basic terminology and

The author is currently a full-time Ph.D. student at Texas A&M University.
Until May 1991, the author's address is 1403 Francis Drive, College
Station. TX 77840.

Email address is dcook@ajpo.sei.cmu.edu

103

nomenclature required to discuss concurrent/ parallel processing with an
experienced real-time programmer.

Most experienced Ada educators would agree that a syntax-directed
course is NOT the way to teach Ada. Instead, most agree that you should
start with the concepts of abstraction and encapsulation, which in turn
motivates the Ada packaging concept. Additionally, educators using a
sound software engineering foundation teach that using "brute force" to
tackle to problem is insufficient. Instead, they teach that a proper design
is a necessity for solving anything other than a very small trivial problem.
By teaching good design, educators provide students a good "conceptual
framework" upon which to hang and organize more complex topics later.

The same treatment applies to teaching tasking. Tasking is much,
much more than just breaking up an Ada system into large blocks than
can somehow "execute concurrently" or even in "apparent parallelism".
First of all, students (and software designers in general) need to establish
when either parallel or concurrent programming is appropriate. It is
fundamental that students see exactly when tasking can benefit the final
product. Frederick Brooks says that there is an "inherent complexity" to
programming [Brooks 1987], and this certainly applies to tasking. The
trick is deciding upon just what the inherent complexity really is.
Software designers must apply abstraction in the design so as to capture
the inherent complexity, but abstract away the non-essential elements. I
have had students write programs that required four generic
instantiations and three tasks to implement a simple "Hello World"
application. While it worked, it was far more complex than needed. If a
complex design is not needed, simpler methods should suffice. When,
then, does a task need to be part of the solution?

2. WHEN TASKING IS APPROPRIATE

Often. educators brush off the question of when to use tasking by
saying "Use tasking whenever parallelism is required". I doubt that many
programmers (students and professionals alike) understand what
parallelism actually is, let alone when it is required. In any case, it is
wrong to let any student think that one of the prerequisites for using
tasking is a problem that requires parallelism. Many sequential problems
can be elegantly solved by correctly applying tasks, even though actual
parallel processing will never be part of the solution.

2.1 The use of "Apparent Parallelism"

Few, if any educational Ada compilers actually support true parallel
processing, anyway. Certainly, when using a PC-class machine (to include
Macintosh machines, of course), a single CPU is all that is available. Large

104

systems also usually only have a single CPU (especially in an educational
or development environment.) Even when using a machine like a
Sequent (which can be configured for up to 10 processors), the single
controller and dispatcher hosts all Ada tasks in a system upon a single
processor. Educators often gloss over this, and continue to make sure
that the students associate Ada tasking with parallel processing.

Granted, there is nothing wrong with using tasking on a single
processor (apparent parallelism or concurrent processing) to provide an
introduction or overview of parallel processing for a "cheap" price.
However, students should be able to see that using tasking on a single-
processor machine sometimes does have applications. As an example,
imagine the problem of implementing a simple autopilot system.
Functional modules might consist of the following:

Check Heading

Adjust Controls

Ch ytems

F Get New Inpu

Design #1

The sequential solution to the design above would follow easily.
After implementation, I would now ask my students to consider how to
implement a "error handling" or problem-handling procedure.
Specifically, students should be able to write a single procedure that
would handle errors that could occur in any of the other modules.
Therefore, it should be able to both call and be called by all other
"worker" program units.

105

Although there certainly exist various ways of implementing the
error-handling routine, the most easily visualizable design would now
probably be:

Handle Problem
C f

wsCheck Systems

Get New Inpu

Design #2

The current state of the design motivates a discussion as to which
modules are more important. Does the program want to be "stuck" in
*Get New Input" when there is a serious engine problem? Can it afford to
wait until it "gets back around" to "Check Systems"? Probably not.
Instead, what is needed is a solution that would allow immediate
recognition and handling of problems from a multitude of various
modules. Likewise, the design calls for an implementation that
conceptually lets each module proceed in parallel (or, at least apparent
parallel).

Certainly, the notions of tasks are now motivated. Rather than
blindly proposing a problem to students and allowing them to solve it
using tasks, they have instead been proposed a problem that can be
solved sequentially, but which may have a more correct solution that is
non-sequential. Perhaps a design and implementation using tasks could
appear as:

106

Check Heading
Adjust Controls

Check Systems Get New Input

Design #3

Even though students are implementing on a sequential machine, the
"apparent parallelism" of the design lends itself to using tasking even in a
sequential environment. The "inherent complexity" of the problem
motivates the use of tasks, even though the programmers should always
be consciously aware the solution is probably running on a single CPU
rather than actually running upon multiple processors. Unfortunately.
even though tasks may be used to design a simple and elegant solution,
tasking can cause problems, even when used in a sequential environment.

2.2 Problems in Apparent Parallelism

There are serious problems that befall the first-time task user.
First of all, any task that does I/O interfacing with the user (so-called
real-time user I/O) can temporarily lock up the entire system on many
implementations. This occurs because the task that has issued a get or
get-line is running, and cannot be swapped out until the completion of
the I/O. Secondly, a non-preemptive or non-time-slicing run-time
environment could cause any one of the above tasks to "hog" the system.
effectively locking it up (or worse yet, allowing a less-important task to
execute for an indefinite amount of time). Solution? Students need to
understand how to implement a pseudo time-slicing algorithm, even on
non-time-slicing machines. This can be as simple as the explaining the
judicious use of a delay 0.0 to cause the scheduler to look at other ready
tasks.

The problem is that instructors often start by discussing both a true
parallel implementation, and the minimum delays that a program unit is

107

willing to wait for either a timed accept or a timed entry call. Instead,
students need to discuss and understand both the problems with using
time in tasking, and the problems with using multiple processors.

3. REAL-TIME SYSTEMS

When educators start talking about using either timed accepts or
timed entry calls, they are now discussing the concepts of placing
"deadlines" in processing. This is certainly a good thing, as most real-
world applications require deadlines. However, as Ada educators, we
often miss most of the important concepts that are required to effectively
educate students who can understand the possibilities and limitations of
Ada tasking. Do we even understand ourselves how deadline-driven real-
time systems are constructed?

3.1 Simple Tasking and Basic Tasking Problems

Simple, no-deadline tasking is the area that most students begin
and end with in terms of a "tasking education". In no-deadline tasking,
the clock is ignored. Because there are no deadlines of any type, it
doesn't matter whether or not you are implementing tasking as
concurrent or parallel (uni-processor or multi-processor).

3.1.1 Periodic Tasks

Strictly speaking, a "periodic" or re-occurring task is not a "no-
deadline", although it is often treated as such. Even when teaching about
"periodic" tasks, there are problems associated with the use of. for
example, the delay 5.0 to cause a task to execute every 5 seconds. First
of all, as I am sure we all know, the execution of the task itself takes up
some time. This time (let's call it x) must be accounted for. Therefore,
the delay statement should be delay 5.0 - x. However, we must know that
x is not a constant. Therefore, every time we go through the periodic
task, we must calculate a new x. An important concept, also, is that if the
periodic delay is small, then z might eventually get larger than the delay.
Since we are talking no-deadline (ignore the clock), this isn't really a
problem, just something that students should understand the
implications of. If it happens, the overhead of calculating the new x each
time only further delays the response time, as we are already backed up
more than a full cycle.

Another problem is the problem with the resolution of the system
clock vs. the accuracy of the delay statement. [Clapp 19901 points out the
problems associated with clocks and delays.

108

Finally, even in no-deadline tasking. problems such as deadlocks
and priority inversion crop up.

3.1.2 Deadlocks

Even without a clock-driven deadline to worry about, serious
problems can occur in even simple Ada tasking systems. First of all (and
most deadly), both deadlocks and livelocks can occur [Coffman 1973].
The problem with teaching Ada tasking too early in the computer science
curriculum is that students without an adequate knowledge of operating
systems can't fully understand how to prevent, avoid, or detect deadlock.

Granted, a fairly simple explanation of what a deadlock is can be
given early on in even a beginning computer science course. However,
the actual definition of deadlocks, and, most importantly, how to design
systems that avoid deadlocks requires an understand of how a system
allocates and assigns resources. This should not be put off until after
tasking is taught. Especially in a non-academic environment (i.e. a
training environment), a serious discussion of the many different kinds of
deadlock should be covered. Often, we brush off this topic with a fairly
simple "don't even call a task that could potentially call you before the
first rendezvous is complete". Totally insufficient!

Preventing deadlocks is strictly a design function. Even something
so simple as declaring a task in the wrong place can "freeze" a system
(due to the task/master dependencies Ada must check before allowing
program unit to complete). Parallel (or concurrent routine) design is not
something given to naive programmers. As educators, we at least need to
explain to beginners that great care and experience is needed even when
implementing trivial tasking problems. Tasking makes possible a whole
new class of ways for beginners to screw up unintentionally. Remember,
we don't want to frustrate our students, making them hate Ada before
they can even become familiar with it.

3.1.3 Priorities and Priority Inversion

Using priorities in tasking is another subject that, on the surface,
appears simple. I tended early on to "brush over" this subject. thinking
that nothing could be simpler. The simple fact of the matter is "Ada and
priority-driven tasks don't work!". [Locke 19881. First of all, the FIFO
queues that Ada uses to implement ently points forces low-priority tasks
ahead of you in line to rendezvous first. Thus, a higher-priority task
cannot usurp a lower-priority task ahead of it. This alone is incompatible
with true real-time programming. As a matter of fact. people who
actually write and maintain real-time systems frequently laugh

109

immediately when the mechanics of Ada FIFO queues are explained to
them.

Along with FIFO queue problems, priority inversion occurs when it
is impossible to run a high-priority task without running a lower-priority
task first. Cornhill and Sha 11987] explain in terms of client tasks and
servers. Basically, this occurs in Ada because the prorit inheritance
scheme only occurs between the running server and the client that is
being served immediately (the top entry in the queue, the caller that is in
rendezvous). Partial solutions can range from implementing intermediate
tasks to using a large number of entry points.

Another problem with priorities in Ada is that Ada does not support
dynamic priorities. It is impossible to change the priority of a task, since
the task priority is static, and hard-coded at compile. This, coupled with
the FIFO queue that Ada uses, makes serious priority-driven tasking
impossible.

To make real-time tasking work at all, some mechanism for
avoiding this FIFO dependency must be implemented. This can take the
form of "intermediate" tasks that reorder a queue. having multiple
"classes" of entry points (one for each priority that could possible call
each "class" of entry point within a task), or communicating with the
"bare machine" (via assembly language and the predefined package
machinecode). Neither of the three is wrong. As Norman Cohen points
out [Cohen 1988], tasking sometimes is inherently machine-dependent.
Granted, one of the goals of the original Ada design team was to design a
portable language. However, one of the goals was also to make a language
that was "usable". Tasking, far more than any other feature of the Ada
language, can require knowledge not only of the host machine, but of the
specific characteristics of the operating system or run-time environment.
If this is so. then portability is sacrificed. However. if the initial problem
requires a machine-specific solution, then abandoning portability is part
of the solution. Indeed, it becomes part of the "inherent complexity".

3.2 Soft-Deadline Tasking (Fault-Tolerance)

Once you get into true real-time programming, you have to start
considering the clock in terms of meeting clock-imposed deadlines. Ada
is best suited for working with so-called soft deadlines. In soft deadlines.
"some" of the imposed deadlines won't be met on time (or at all). Those
that are met, but not on time, are allowed to be "occasionally" late by a
"reasonable" amount of time. The quotes signify that there is an inherent
fuzziness involved. The definition of "reasonable", "some". and
"occasionally" depend greatly upon the application, are very subjective.
and subject to dynamic constraints. Suffice it to say that careful analysis
of the problem are required to fully define the allowable parameters for
failure (that is exactly what a missed deadline is. a failure of the system to

110

meet the needs of the user). Failure. however, can be planned for. In a
distributed system, failure can signify that an application (or task) needs
to be rehosted or restarted. A serious problem in Ada is that a task
cannot easily inform anybody (even its' master) when it dies. Granted, an
attempt to call a terminated or completed task will raise an exception.
However, it would be nice to know that a task has died BEFORE I attempt
to call on it for a rendezvous. Because of this limitation, it is easy to
assume that some tasks won't be available when they are called. Proper
design of the exception handler, though, could allow a task to be
restarted.

A serious problem, though, anytime you start depending upon clock
time is the implicit ordering of exactly when an event occurs, and how to
recover from errors (exceptions) if a resilient or fault-tolerant
environment is needed.

3.2.1 Non-Distributed Environments and Problems

Even when a non-distributed system using concurrent processing is
implemented, a real-time system that is trying to meet deadlines can
have serious problems. Because deadlines usually imply that some degree
of fault-tolerance is required (what good is knowing that you missed a
deadline if there isn't some recovery or remedial action available), you
have to consider error recovery and fault-masking. Fault masking refers
to "hiding" the error or taking remedial action) so that the actual errors
disappears. In Ada, any exception handler that does not propagate the
exception performs fault masking. However, in cases where a ro/back is
required, Ada does not provide mechanisms for recovery. This is not a
deficiency of Ada, as I do not know of any language that does.

Rollbacks refer to the concept of restoring the system to a state
that was consistent before an error occurred (and. hopefully, avoiding the
same error in the future). This requires state saves (which include
checkpointing files, buffering output, taking "snapshots" of memory, and
even calling system-dependent routines to determine queue contents)
that need to occur at predetermined intervals. The discussion of rollback
and recovery is beyond that scope of this paper (see [Lamport 1978],
[Koo 19871. and [Hecht 19761). What is important, however, is that
students understand the great complexity that a fault-tolerant deadline-
driven system requires. even in a non-distributed environment.

3.2.2 Distributed Environments and Problems

The biggest two problems in a distributed environment are time
and location. Ada provides only the minimal mechanisms to determine
the time of a particular task [Volz 19871. Additionally, when we call a

111

task. there is no way to determine where the task is located. This is very
critical, as a detected failure (an exception or non-response) might
warrant a restarting via allocating a new value for a task pointer. But. how
do we restart on the correct processor? Without the use of system calls
(non-portable), this is currently impossible.

Even on a soft-deadline system, exact time is very important. In
any distributed system, determining the time is a very demanding task.
Effectively, it is impossible to determine a true global time. Instead, we
can only place a lower bound on it. Often, because of clock accuracy
problems, we can't even accurately determine the local time. This is
particularly important when we have to roll-back to a time prior to time X
on processor Y. It is difficult to determine the relative local time that
corresponds to this time X. In any case, clock synchronization becomes a
major problem on any distributed system.

3.3 Hard-Deadline Tasking

This area, the most rigorous of the three, is the one that is often
least covered and least understood. It is difficult to effectively teach this
area in terms of tasking, because of the large amount of "outside"
knowledge necessary. In a hard-deadline environment, fault-tolerance
and reliability require that 100% of all deadlines termed "critical" must
be met (or as close to 100% as possible). Because of these rigid time
constraints, system snapshots and saves must be done more frequently
the further away from the deadline that you are [Krishna 19841. As you
get closer to the end of the task (and closer to meeting the deadline).
there is less work left to do, so less frequent saves are required. This is
because the "penalty" of a failure (having to rollback to the last save)
decreases depending upon the amount of work left to do. Because of the
huge amount of overhead, in terms of scheduling, task communication.
and I/O requests for saves, programming languages by themselves
typically do not have the power to implement hard-deadline parallel or
concurrent processing without resorting to many system calls (and a
corresponding lack of portability.)

Without a doubt, Ada does not have the power to support hard-
deadline tasking. Experiments on Ada as it currently is show that only
84% of deadlines can be met. Even with several suggested changes to
the language, only 89% to 95% of deadlines can be met [Locke 19881.
Clearly. this is insufficient in a critical real-time environment where an
extremely high degree of fault-tolerance is required. If Ada is to be used
as the language for these types of applications, portable Ada is
insufficient. To make the system work, a choice or either system calls or
3rd party add-on boards and hardware is required.

Is this bad? Is resorting to myriad system calls defeating the
purpose of Ada? Not at all! Ada was designed to be a general-purpose

112

real-time language, true. But, any language that tries to be "all things to
all users" is probably doomed to failure (look at PI/ 1. for example).
Instead of indiscriminately using system-dependent calls throughout a
system, these calls can be placed logically (and physically) in a rather
small kernel or implementation-defined pragmas or subroutines [Cohen
1987]. As Norman Cohen points out, the Ada Run-Time Environment
Working Group (ARTEWG) has already defined a provisional set of such
interfaces. Although it is unlikely that these interfaces would become
common (thus allowing true portability), at least the non-portable code
will be well-defined and identifiable.

4. MYTHS ABOUT TASKING

Tasking. in general, is seen by some students as a way to speed up a
potentially slow process. I cannot stress enough that, as educators and
trainers, we are doing our students a serious injustice if we allow them to
feel, in any way, that this is true. Placing parallelism (or concurrence) in
a sequential process gains nothing, and actually slows the system down (if
not because of any of the potential problems discussed above, then due to
the overhead of having to schedule calls and rendezvous). Students often
come away from introductory classes in Ada feeling that task calls and
accepts are "automatically" handled by the system. Not true! Tasking is
expensive computatlonaly!

First of all, in most environments, defining stack space for each
task eats up precious system resources, and requires a lot of overhead.
Secondly, having to implement a scheduling system takes up valuable
machine cycles. The CPU must determine who is ready vs. who is
blocked, determine who has first-shot at the CPU, and then either make
a context-switch or load the next task into memory to execute. These
things can eat up time if they are done repeatedly throughout an entire
run. The bottom line is this: Tasking should be used only if the design
requires it, and only after careful analysis of both the problem and
potential (parallel) solution.

If the above were not enough, I would also like to briefly mention
several anomalies of parallel processing [Coffman 19731. These anomalies
are very similar to Belady's page-fault anomaly that we learned in basic
operating systems. When using deterministic scheduling, it is possible
that decreasing the number of tasks can actually increase the overall
system execution time. Parallel processing anomalies, on the other hand,
show that increasing the number of processors can actually slow down a
system. Although counter-intuitive, it is very true. Also, decreasing the
processing time of even a single task or relaxing a partial ordering
(removing restrictions as to which tasks must run prior to other tasks)
may also increase overall run time.

113

In a system where there is a high degree of interdependence
between tasks (many inter-task rendezvous), the communications
overhead (especially on a distributed system that has a poorly-
implemented connection system) may make additional processors more
expensive than any potential benefit justifies. Clearly, careless use of
tasks when they are not required not only fails to speed up the eventual
solution, but can seriously slow it down.

5. CONCLUSIONS

Does the above paper paint a rather grim and bleak picture of the
future of Ada tasking? Not really. First of all, many of the serious
shortcomings of the language itself are already being addressed by Ada 9X
[1989] and [1990]. Secondly, all this paper has really done is lightly
touch on some of the important design issues that must be addressed
when writing real-time or fault-tolerant systems, regardless of the
language or eventual host machine. This problem is not Ada specific. It's
just that we have never had a high-level language this popular before that
forced us to consider such potential problems as a normal part of the
language!

When teaching good software engineering, we stress to our
students that Ada is just a tool, and that it cannot compensate for poor
analysis and design. However, when we take a simplistic approach to
teaching tasking, we are crippling our students by putting programming
"blinders" on them. We give them very high-level (and incomplete)
tools, yet we don't equip them with the knowledge to understand the
high-level problems, let alone the low-level ones. Teaching tasking
should be viewed as part of teaching real-time systems, distributed, fault-
tolerant and resilient programming. As a bare minimum, we need even
our undergraduate students to see how Ada's tasking paradigms fit into
the overall scheme of software engineering. As a minimum, students
should leave even an introductory course with the knowledge that tasking
does not either identify or solve problems in real-time distributed
programming. If the solution requires parallelism, then tasking gives
them the necessary power to solve the problem. However. if parallelism
is not appropriate, then using tasks "just because they're there" introduce
needless complexity and problems.

Teaching tasking as a single part of a language defeats the purpose
of having parallel processing as an inherent part of Ada. Instead, good
software engineering education and proper training in problem analysis
and design gives students the tools to use tasking effectively, and see
where tasking contributes (rather than detracts) to an elegant, effective,
implementable and correctly-running solution.

As Sha and Goodenough [19901 point out. "... tasking operations,
like rendezvous larel expensive. If the Ada tasking model doesn't work,

114

use an alternate form of concurrency. based on Ada procedures. Don't
expect the compiler to perform any magic". The magic they are talking
about is proper design. The compiler won't do it for you, and neither will
indiscriminate use of tasks in a non-parallel problem. As Ada educators,
we owe it to our students to make sure that we tell them the truth about
Ada tasking.

ACKNOWLEDGEMENTS

I would like to thank Professor Udo W. Pooch, Texas A&M
University, for his help in proofing and critiquing this article.

REFERENCES

ADA9X 1989 Ada 9X Project Report, Office of the Under Secretary of
Defense for Acquisition, Wash., D.C.

ADA9X 1990 Ada 9X Project Report. Supplement 1, Office of the Under
Secretary of Defense for Acquisition, Wash., D.C.

BROOKS, F.P. Jr. 1987 "No Silver Bullet", Computer, Vol 20, No 4.

CLAPP, R.M. and MUDGE, T. 1990 "The Time Problem", SIGAda Ada
Performances issues, Vol 10, No 3.

COFFMAN, E.G. and DENNING. P.J. 1973 Operating Systems Theory,
Prentice-Hall Inc., Englewood Clifts, N.J.

COHEN, N.H. 1988 "Dependence on Ada Task Scheduling is not
Erroneous". Ada Letters, Vol 8, No 2.

CORNHILL. D. and SHA, L. 1987 "Priority Inversion in Ada, or What
Should be the priority of an Ada Server Task?', Ada Letters.
Vol 7, No 7.

HECHT, H. 1976 "Fault Tolerant Software for Real-Time Applications",
ACM Computer Surveys, Vol 8, No 4.

115

KOO. R. and TORY, S. 1987 "Checkpointing and Rollback Recovery for
Distributed Systems", IEEE Transactions on software
Engineering, Vol SE-13, No 1.

KRISHNA. C.M., SHIN, K.G., and LEE, Y. 1984 "Optimization Criteria for
Checkpoint Placement", Comnmunications of the ACM. Vol 27,
No 10.

LOCKE, D. and SHA, L. and RAJKUMAN, R. and LEHOCZKY, J. 1988
"Priority Inversion and Its' Control: An Experimental
Investigation", SIGAda International Workshop on Real-une
Ada issues, Vol 8, No 7.

LAMPORT, L. 1978 "Time, Clocks, and the Ordering of Events in a
Distributed System", Communications of the ACM, Vol 21, No
7.

SHA. L. and GOODENOUGH, J.B. 1990 "Real-Time Scheduling Theory
and Ada", IEEE Computer, Vol 23, No 4.

VOLZ, R.A. and MUDGE, T.N. 1987 "iming Issues in the Distributed
Execution of Ada programs", IEEE Transactions on
Computers, Vol C-36, No 4.

116

Aikri tjing Ada

by
J. Barry Kolb

Prepared for
Fifth Annual Ada Software

Engineering And Training (ASEET) Symposium

Computer Science Department
Ocean County College

Toms River, New Jersey 08753
(908) 255-0357

117

Abstract

This paper addresses the need to consider software engineering in
the early undergraduate curriculum. The perspective is that of a
small two year institution working without Ada. The perceived need
for change and limitations of the computer science department are
described. This is followed by a description of steps taken to
prepare students for a future in software engineering.

118

I. Introduction

This paper relates the steps taken by the computer science department of
Ocean County College to prepare students for work and/or additional
education in software engineering despite the lack of Ada language facilities.
While not suggesting that the Ada deficiency was an advantage to be
emulated, it is suggested that by focusing on the real needs of the students
progress was made despite the failure to adopt Ada.

Ocean County College (OCC) is a public two year institution located on the
central New Jersey shore. The enrollment of about 7,000 full and part-time
students is divided between a younger (18 - 24 year old) daytime population
and the older (30+) evening population. Of the approximate 225 computer
science majors the majority intend to transfer to four year institutions after
graduation. Most students work, at least part-time, and the majority (60+%)
have traditionally been female. Data for the spring 1990 semester indicates a
dramatic drop in the number of female students, this may be an anomaly.

The students verbal and analytical skills are varied, but generally poorly
developed. Many students have exceptional difficulty adjusting to the concept
of developing a solution rather than retrieving, from the text for example, a
solution. At best many students have been taught "boiler plate" techniques
in their high school math and computer classes. Students also find that they
must take from one to four semesters of math before starting on the
department's required courses. This is often true even for those with a good
record in high school math.

The computer science curriculum follows the first two years of the ACM
model. Transferring students have few problems achieving third year status
at four year institutions throughout the country.

II. The Campaign for Ada

Interest in Ada at OCC began in 1986 following the author's encounters
with the NASA Space Station Freedom Project and members of ACM's SigAda.
While an Ada compiler was not available for the computer science department's
systems, efforts were started to plan for an early introduction of Ada.
Unfortunately, this planning did not anticipate the strength of opposition to
Ada. Progress on the specific issue of incorporating Ada in the curriculum
was blocked by this strong opposition. Given an active opposition it proved
impossible to reach a consensus on Ada. This, in turn, blocked funding for
Ada.

The failure to adopt Ada may be a battle lost, but war won. The support
received from groups like SigAda and ASEET demonstrated repeatedly that the
efforts at OCC not were taking place in isolation. Many of the improvements
at OCC can be traced to contacts with these groups.

119

III. The Underlying Need

As it became evident that Ada was not going to be introduced in the near
future an examination of the curriculum was begun to determine what steps
could be taken without Ada to better prepare students. A primary factor in
starting this effort was the author's encounters with individuals involved in
software development. A recurring theme in these conversations was the
difficulty in converting programers to Ada practitioners. It was not the
language that was the problem, programming habits were blocking effective
software engineering. All too often the origin of these habits could be traced
to undergraduate education. Software engineering is not simply writing larger
programs, but writing them under real world constraints of time and budget
while meeting safety and reliability requirements.' A solid foundation was not
being laid for the future development of software professionals.

The question seemed obvious; why not teach it right the first time? There
were a number of reasons for the current practices. Since software
engineering was not considered appropriate in the lower level undergraduate
courses, it had been simply ignored. Many techniques and concepts required
in software engineering were considered superfluous when programming in the
small. incorporating these concepts would complicate the learning process,
at least in the short term. Yet, the longer term, students would find that
their undergraduate education had left them just as poorly prepared of
software engineering as high school had for college. In addition, faculty
experience, textbooks, and the languages available did not support many
important software engineering concepts. It became clear that accepting these
reasons lead to a curriculum the+ produced poorly prepared graduates. With
or without Ada change was required.

Thus, the underlying philosophy became one of keeping the goal of
software engineering always in sight, even if the students were not fully
aware of the goal. This is not an attempt to teach software engineering to a
first semester student, rather, it is a recognition of the students long term
destination. It is, therefore, our responsibility not to erect roadblocks to that
ultimate goal.

II I. Actions

If software engineering is "the disciplined application of engineering,
scientific, and mathematical ,rinciples and methods to the economical
production of quality software," then early undergraduate education must lay
the foundation. Changes had to be made in our courses to build this
foundation while providing instruction in the basics of computer science. This
had to be accomplished using ISO standard Pascal, not Ada. Standard Pascal
had been selected based on a belief in portability and standards. Turbo
Pascal, while far more popular, was avoided due to its disregard for the
s'andard.

Experience has shown that far more can be accomplished in support of
software engineering than was first expected. Focusing on course content and
teaching methods rather than a new language has been beneficial. Students
discove, for themselves the need for language facilities that Pascal lacks. As

120

they push our Pascal compiler to its limits, they begin to see how a language
might make their task easier, often identifying features found in Ada for
themselves.

Changes in our approach can be traced to specific concepts in software
engineering. Software engineering is not considered in full, rather we are
seeking to prepare the student for the time when they will face software
engineering. Our primary goal is to teach solid computer science concepts
without building artificial barriers to the future conquest of software
engineering. A brief explanation of some of the steps taken follows.

Modularity

Top down design has long been taught in computer science classes.
However, traditionally the resulting modules are not discrete program units.
The entire program is created in one file sometimes producing a long list of
compile time errors, global variables and many other drawbacks. More
important, the program is seen by the student as a single unit producing one
answer, not a carefully constructed interdependent system. In our first
semester course all procedures and functions are written as "external" units.
This permits editing and compiling smaller files which the student sees as
discrete modules within a larger program. This also permits the student to
focus on a single procedure, following the design, code, and test cycle to
completion before moving on to another procedure. The key consequence is
a change in how the student views software.

Localization

Creating procedures in external files makes passing correct parameters
mandatory. In addition local variables cannot be changed inadvertently by
calling procedures. Global variables simply do not work. Initially this is more
difficult for the students, especially those who have had Pascal in high
school. To clarify the purpose of parameters I have borrowed from Ada to
require that all formal parameters carry a comment indicating IN, OUT, or
INOUT as the parameter's intended purpose. The required comment clearly
distinguishes the logical role of parameters overcoming, to some degree,
Pascal's weakness in this area. This serves as a reminder to the student of
a parameter's intended role. The result is better programs and a better
understanding of how to produce the superior program. Careful selection of
programming assignments also makes it possible for students to reuse
procedures in later assignments. It usually takes only a single example of this
to convince students of the superiority of separate procedures.

Abstraction

Keeping the details of a procedure from the programmer is difficult on a
small student assignment where a single student writes the entire program.
The concept of abstraction is introduced as students learn that they can code
and compile a separate procedure then turn away and focus attention on
another part of the assignment. By the second semester this can be taken a
step further as assignments may call for students to use an instructor

121

provided set of procedures given only the parameters and any data types
required. They are not given access to source code for the procedures. This
too is a trying experience for the students, however, once successful
understanding follows.

information Hiding

This follows closely from abstraction, but cannot be implemented directly
with our Pascal compiler. it can be simulated by the elementary tactic of
reserving for the instructor the right to change the underlying details of the
supplied procedures as long as the parameters and outcomes do not change.
Students seem to have little problem with the concept of improving procedures
without requiring changes in the calling program.

Standards

The importance of standards and style are stressed from the beginning.
Students are given a simple coding standard with their first assignment. Even
at this early stage most students can appreciate that a uniform standard
contributes to program readability, if only for the instructor grading the
programs. Invariably some students, usually with a background in high school
Pascal, will challenge portions of the coding standards with reasonable
alternative approaches. This has been found to be an ideal opportunity to
point out that the utility in many aspects of coding standards lies in
establishing a uniform approach across a programming team. There may if fact
be many "correct" approaches, but one must be selected. A proper place is
then established in the students' minds for coding standards.

Discussion of standards on a higher level is woven throughout our courses.
The choice of standard Pascal is an attempt to establish our concern early in
the learning process. As students move their programs between the
department's system and their home computers they quickly understand the
value of a standard. Having confronted difficulties with small student
assignments the student develops an early appreciation of standards and
portability.

IV. Conclusions

The primary evidence of success comes from conversations with graduates
who have encountered software engineering courses or work requirements. It
is not uncommon to hear our graduates contrasting the ease with which they
adapted to Ada and software engineering with their associates difficulties. We
have not taught them software engineering; we have tried to provide the
foundation of good programming that software engineering education requires.

122

1. Gibbs, Norman E. The SEI Education Program: The Challenge of Teaching Future
Software Engineers. In Canmunications of the ACM. 32, 5 (May 1989), 594 - 605.

2. Humphrey, Watts S. The Software Engineering Process: Definition and Scope.
In Proceedings of the 4th International Software Process Workshop.
(Moretonhampstead, Devon, UK, May 11-13, 1988). New York, NY, ACM SigSoft, 1989.

123

This Page Left Blank Intentionally

124

Panel Session

The Future of Ada

Douglas Samuels, Chair

The purpose of this panel is to provide Ada 9X information, status, and future direction
to the education and training community. The panelists will provide a brief overview of
the 9X process and discuss Ada 9X limitations, constructs not included, special studies,
Ada 9X requirements, and Ada bindings to associated standards and the impact of these
standards on the Ada 9X process.

Participants in the panel include:

Major Tom Croak HQ USAF/SC, selected for his knowledge on Ada

bindings

Dr. Robert Dewar NWU, Distinguished Reviewer and master of why things
were not included

Dr. Norm Cohen IBM, Distinguished Reviewer and expert on limitations

Mr. Bill Carlson Intermetrics, head of the Mapping/Revision Team

125

This Page Left Blank Intentionally

126

